Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T06:58:27.842Z Has data issue: false hasContentIssue false

Evidence for biodegradation products in the interstellar medium

Published online by Cambridge University Press:  20 November 2009

Kani Rauf
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, 2 North Road, Cardiff CF10 3DY, UK
Chandra Wickramasinghe*
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, 2 North Road, Cardiff CF10 3DY, UK

Abstract

The interstellar absorption band centred on 2175 Å that is conventionally attributed to monodisperse graphite spheres of radii 0.02 μm is more plausibly explained as arising from biologically derived aromatic molecules. On the basis of panspermia models, interstellar dust includes a substantial fraction of biomaterial in various stages of degradation. We have modeled such an ensemble of degraded biomaterial with laboratory spectroscopy of algae, grass pigments, bituminous coal and anthracite. The average ulrtraviolet absorption profile for these materials is centred at 2175 Å with a full width at half maximum of 250 Å, in precise agreement with the interstellar extinction observations. Mid-infrared spectra also display general concordance with the unidentified interstellar absorption features found in a wide variety of astronomoical sources.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boulanger, R., Prevot, M.L. & Gry, C. (1994). Astron. Astrophys. 284, 956.Google Scholar
Draine, B.T. (2003). Ann. Rev. Astron. Astrophys. 41, 241.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1962). Mon. Not. Roy. Astron. Soc. 124, 417.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1969). Nature 223, 459.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1977). Nature 270, 323.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1989). ESA SP 290, 67.Google Scholar
Hoyle, F. & Wickramasinghe, N.C. (1999). Astronomical Origins of Life. Kluwer Academic Publishers, Dordrecht.Google Scholar
Mathis, J.S. (1990). Ann. Rev. Astron. Astrophys. 28, 37.CrossRefGoogle Scholar
Sapar, A. & Kuusik, I. (1978). Publ. Tartu. Astrophys. Obs. 46, 71.Google Scholar
Schlemmar, S. et al. (1994). Science 265, 1685.Google Scholar
Smith, J.D.T. et al. (2007). Astrophys. J. 656, 770.CrossRefGoogle Scholar
Stecher, T.P. (1965). Astrophys. J. 142, 1683.CrossRefGoogle Scholar
Wickramasinghe, J.T., Wickramasinghe, N.C. & Napier, W.M. (2009). Comets and the Origin of Life. World Scientific Publ. Co., Singapore.CrossRefGoogle Scholar
Wickramasinghe, N.C. (1967). Interstellar Grains. Chapman & Hall, London.Google Scholar
Wickramasinghe, N.C., Hoyle, F. & Al-Jabory, T. (1989). Astrophys. Space Sci. 158, 135.CrossRefGoogle Scholar
Wickramasinghe, N.C., Wickramasinghe, A.N. & Hoyle, F. (1992). Astrophys. Space Sci. 196, 167.CrossRefGoogle Scholar
Witt, A.N. et al. (2006). Astrophys. J. 636, 303.CrossRefGoogle Scholar