Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T05:27:57.808Z Has data issue: false hasContentIssue false

From cosmos to intelligent life: the four ages of astrobiology

Published online by Cambridge University Press:  26 July 2012

Marcelo Gleiser*
Affiliation:
Department of Physics and Astronomy, Dartmouth College Hanover, NH 03755, USA

Abstract

The history of life on Earth and in other potential life-bearing planetary platforms is deeply linked to the history of the Universe. Since life, as we know, relies on chemical elements forged in dying heavy stars, the Universe needs to be old enough for stars to form and evolve. The current cosmological theory indicates that the Universe is 13.7 ± 0.13 billion years old and that the first stars formed hundreds of millions of years after the Big Bang. At least some stars formed with stable planetary systems wherein a set of biochemical reactions leading to life could have taken place. In this paper, I argue that we can divide cosmological history into four ages, from the Big Bang to intelligent life. The physical age describes the origin of the Universe, of matter, of cosmic nucleosynthesis, as well as the formation of the first stars and Galaxies. The chemical age began when heavy stars provided the raw ingredients for life through stellar nucleosynthesis and describes how heavier chemical elements collected in nascent planets and Moons gave rise to prebiotic biomolecules. The biological age describes the origin of early life, its evolution through Darwinian natural selection and the emergence of complex multicellular life forms. Finally, the cognitive age describes how complex life evolved into intelligent life capable of self-awareness and of developing technology through the directed manipulation of energy and materials. I conclude discussing whether we are the rule or the exception.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, T., Bryan, G.L. & Norman, M.L. (2000). Astron. Astrophys. 540, 3944.Google Scholar
Abraham, R.G. & van der Bergh, S. (2001). Science 293, 1273.Google Scholar
Arrhenius, S. (1908). Worlds in the Making: The Evolution of the Universe. Harper & Row, New York.Google Scholar
Beckwith, S.V.W. (2008). Astrophys. J. 684, 14041415.CrossRefGoogle Scholar
Bonner, W.A. (1995). The quest for chirality. In Physical Origin of Homochirality in Life (AIP Conference Proceedings 379), ed. Cline, D.. AIP Press, New York.Google Scholar
Bousso, R. & Polchinski, J. (2000). J. High Energy Phys. 6, 6.CrossRefGoogle Scholar
Bouwens, R.J. et al. (2011). Nature 469, 504507.Google Scholar
Caldwell, R.R., Kamionkowski, M. & Weinberg, N.N. (2003). Phys. Rev. Lett. 91, 071301.Google Scholar
Carroll, S.M. & Chen, J. (2005). Int. J. Mod. Phys. D14, 2335.Google Scholar
Cassan, A. et al. (2012). Nature 481, 167169.Google Scholar
Chyba, C. & Sagan, C. (1992). Nature 355, 125.CrossRefGoogle Scholar
Cohen, B.A., Swindle, T.D. & Kring, D.A. (2000). Science 290, 17541755.Google Scholar
Cronin, J.R. (1989). Adv. Space Res. 9, 59.Google Scholar
Cronin, J.R. & Pizzarello, S. (1986). Geochim. Cosmochim. Acta 50, 2419.Google Scholar
Dalrymple, G.B. (2001). Geol. Soc. London 190, 205221.Google Scholar
Davies, P.C.W. & Lineweaver, C.H. (2005). Astrobiology 5, 154.Google Scholar
Dyson, F. (1999). Origins of Life (1985), 2nd edn. Princeton University Press, Princeton, NJ.Google Scholar
Eigen, M. et al. (1991). Biochemistry 30, 1100511008.CrossRefGoogle Scholar
Eisenstein, D.J. et al. (2011). Astron. J. 142, 72 and references therein.Google Scholar
Fenchel, T. (2002). Origin and Early Evolution of Life. Oxford University Press, Oxford, UK.Google Scholar
Fishkis, M. (2007). Orig. Life Evol. Biosph. 37, 537.Google Scholar
Fitz, D., Reiner, H., Plakensteiner, K. & Rode, B. (2007). Curr. Chem. Biol. 1, 41.Google Scholar
Fox, S. (1973). Pure Appl. Chem 34, 641.Google Scholar
Fox, S. (1995). J. Biol. Phys. 20, 17.Google Scholar
Freedman, W.L. et al. (2001). Astrophys. J. 553, 4772.CrossRefGoogle Scholar
Gilbert, W. (1986). Nature 319, 618.Google Scholar
Gleiser, M. (2010). A Tear at the Edge of Creation: A Radical New Vision for Life in an Imperfect Universe. Free Press, New York.Google Scholar
Gleiser, M. & Walker, S.I. (2009). Orig. Life Evol. Biosph. 39, 479 [arXiv:0810.5398].Google Scholar
Gleiser, M. & Walker, S.I. (2010) The Chirality of Life: From Phase Transitions to Astrobiology. DOI: 10.1142/9789814304887_0002 [arXiv:0810.5398].Google Scholar
Jarosik, N. et al. (2011). Astrophys. J. Suppl. 192, 14.CrossRefGoogle Scholar
Johson, A.P. et al. (2008). Science 322, 404.Google Scholar
Joyce, G.F. (2002). Nature 418, 214P21.CrossRefGoogle Scholar
Kaltenegger, L. & Sasselov, D. (2011). Astrophys. J. Lett. 736, L25.CrossRefGoogle Scholar
Kaltenegger, L. et al. (2010). Astrobiology 10, 1.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108.Google Scholar
Lazcano, A. & Bada, J.L. (2004). Orig. Life Evol. Biosp. 33, 235.Google Scholar
Linde, A.D. (1983). Phys. Lett. B 129, 177. [A general overview of Linde's many contributions can be found in A. Linde, Inflation, Quantum Cosmology, and the Anthropic Principle. In Science and Ultimate Reality, eds. Barrow, J.D., Davies, P.C.W. & Harper, C.L. Jr. Cambridge University Press, Cambridge, 2004].Google Scholar
Livio, M. (1999). Astrophys. J. 511, 429.Google Scholar
Lunine, J.I. (2005). Astrobiology: A Multidisciplinary Approach. Addison-Wesley, San Francisco, (In particular, chapter 16).Google Scholar
Mac Low, M. & Ferrara, A. (1999). Astrophys. J. 513, 142.Google Scholar
Miller, S.L. (1953). Science 117, 528.Google Scholar
Monnard, P.A. & Deamer, D. (2002). Anat. Rec. 268, 196.Google Scholar
Morowitz, H.J., Heinz, B. & Deamer, D. (1988). Orig. Life Evol. Biosph 18, 281.Google Scholar
Oparin, A.I. (2003). The Origin of Life (1924). Dover, New York.Google Scholar
Orgel, L.E. (1998). Trends Biochem. Sci. 23, 491.CrossRefGoogle Scholar
Orgel, L. (2000a). Proc. Natl. Acad. Sci. U.S.A. 97, 1250312507.Google Scholar
Orgel, L. (2000b). Science 290, 1306.Google Scholar
Prigogine, I. (1967). Introduction to Thermodynamics of Irreversible Processes. John Wiley & Sons, New York.Google Scholar
Sagan, L. (1967). J. Theor. Biol. 14, 255274.Google Scholar
Salama, F. (2008). In Organic Matter in Space Proceedings IAU Symposium No. 251, eds. Kwok, S. & Sandford, S.. Cambridge University Press, Cambridge.Google Scholar
Segrè, D., Ben-Eli, D., Deamer, D. & Lancet, D. (2001). Origins Life Evol. Biosphere 31, 119145.Google Scholar
Smoot, G.W. (1999). Summary of results from COBE. AIP Conf. Proc. 476, 110.Google Scholar
Sullivan, W.T. & Baross, J. (eds). (2007). Planets and Life: The Emerging Science of Astrobiology. Cambridge University Press, Cambridge, UK.Google Scholar
Susskind, L. (2003). The Anthropic Landscape of String Theory. arXiv:hep-th/0302219Google Scholar
Susskind, L. (2006). The Cosmic Landscape: String Theory and the Illusion of Intelligent Design. Little Brown, New York.Google Scholar
Tarter, J. (2001). Annu. Rev. Astron. Astrophys. 39, 511548.CrossRefGoogle Scholar
Vilenkin, A.D. (1983). Phys. Rev. D 27, 2848.Google Scholar
Wächtershäuser, G. (1992). Prog. Biophys. Mol. Biol. 58, 85.Google Scholar
Ward, P. & Brownlee, D. (2003). Rare Earth: Why Complex Life Is Uncommon in the Universe. Springer, New York.Google Scholar
Webb, S. (2002). If the Universe is Teeming with Aliens…Where is Everybody?: Fifty Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life. Copernicus Books, New York.Google Scholar
Weber, P. & Greenberg, J.M. (1985). Nature 316, 403407.Google Scholar
Weinberg, S. (2007). Living in the multiverse. In Universe or Multiverse? ed. Carr, B.. Cambridge University Press, Cambridge.Google Scholar
Yoshida, N., Omukai, K. & Hernquist, L. (2008). Science 321, 669671.CrossRefGoogle Scholar