Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T10:53:13.889Z Has data issue: false hasContentIssue false

Gamma-ray bursts as a threat to life on Earth

Published online by Cambridge University Press:  29 May 2009

B.C. Thomas
Affiliation:
Department of Physics and Astronomy, Washburn University, 1700 SW College Ave, Topeka, KS 66621, USA e-mail: brian.thomas@washburn.edu

Abstract

Gamma-ray bursts (GRBs) are likely to have made a number of significant impacts on the Earth during the last billion years. The gamma radiation from a burst within a few kiloparsecs would quickly deplete much of the Earth's protective ozone layer, allowing an increase in solar ultraviolet radiation reaching the surface. This radiation is harmful to life, damaging DNA and causing sunburn. In addition, NO2 produced in the atmosphere would cause a decrease in visible sunlight reaching the surface and could cause global cooling. Nitric acid rain could stress portions of the biosphere, but the increased nitrate deposition could be helpful to land plants. We have used a two-dimensional atmospheric model to investigate the effects on the Earth's atmosphere of GRBs delivering a range of fluences, at various latitudes, at the equinoxes and solstices, and at different times of day. We have estimated DNA damage levels caused by increased solar UVB radiation, reduction in solar visible light due to NO2 opacity, and deposition of nitrates through rainout of HNO3. In this paper we give a concise review of this work and discuss current and future work on extending and improving our estimates of the terrestrial impact of a GRB.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Band, D. et al. (1993). BATSE observations of gamma-ray burst spectra. I – Spectral diversity. Astrophys. J. 413, 281292.CrossRefGoogle Scholar
Behrenfeld, M., Boss, E., Siegel, D.A. & Shea, D.M. (2005). Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cy. 19, GB1006.CrossRefGoogle Scholar
Berger, E. et al. (2007). The ERO Host Galaxy of GRB 020127: implications for the metallicity of GRB progenitors. Astrophys. J. 660, 504508 (http://arxiv.org/abs/astro-ph/0609170).CrossRefGoogle Scholar
Bloom, J.S. et al. (2009). Observations of the naked-eye GRB 080319B: implications of Nature's brightest explosion. Astrophys. J. 691, 723737 (http://arxiv.org/abs/0811.1044v2).CrossRefGoogle Scholar
Campana, S. et al. (2008). Outliers from the mainstream: how a massive star can produce a gamma-ray burst. Astrophys. J. Lett. 683, L9L12 (http://arxiv.org/abs/0805.4698).CrossRefGoogle Scholar
Cenko, S.B. et al. (2008). GRBs 070429B and 070714B: the high end of the short-duration gamma-ray burst redshift distribution. Astrophys. J. Lett. submitted (http://arxiv.org/abs/0802.0874).Google Scholar
Chapman, R., Priddey, R.S. & Tanvir, N.R. (2008). Short gamma-ray bursts from SGR giant flares and neutron star mergers: two populations are better than one. Mon. Not. Roy. Astron. Soc. 395, 15151522 (http://arxiv.org/abs/0802.0008).CrossRefGoogle Scholar
Chapman, R., Tanvir, R.N., Priddey, R.S. & Levan, A.J. (2007). How common are long gamma-ray bursts in the local universe? Mon. Not. Roy. Astron. Soc. Lett. 382, L21L25 (http://arxiv.org/abs/0708.2106).CrossRefGoogle Scholar
Coohill, T.P. (1991). Photobiology school. Action spectra again? Photochem. Photobiol. 54, 859870.CrossRefGoogle Scholar
Dermer, C.D. & Holmes, J.M. (2005). Cosmic rays from gamma-ray bursts in the Galaxy. Astrophys. J. Lett. 628, L21L24 (http://arxiv.org/abs/astro-ph/0504158).CrossRefGoogle Scholar
Ejzak, L.M., Melott, A.L., Medvedev, M.V. & Thomas, B.C. (2007). Terrestrial Consequences of Spectral and Temporal Variability in Ionizing Photon Events. Astrophys. J. 654, 373384 (http://arxiv.org/abs/astro-ph/0604556).CrossRefGoogle Scholar
Galante, D. & Horvath, J.E. (2007). Biological effects of gamma-ray bursts: distances for severe damage on the biota. Int. J. Astrobiol. 6, 1926 (http://arxiv.org/abs/astro-ph/0512013).CrossRefGoogle Scholar
Gehrels, N., Laird, C.M., Jackman, C.H., Cannizzo, J.K., Mattson, B.J. & Chen, W. (2003). Ozone depletion from nearby supernovae. Astrophys. J. 585, 11691176 (http://arxiv.org/abs/astro-ph/0211361).CrossRefGoogle Scholar
Kouveliotou, C., Meegan, C.A. & Fishman, G.J. (1993). Identification of two classes of gamma-ray bursts. Astrophys. J. Lett. 413, L101L104.CrossRefGoogle Scholar
Levan, A.J. (2008). On the nature of the short-duration GRB 050906. Mon. Not. Roy. Astron. Soc. 384, 541547 (http://arxiv.org/abs/0705.1705).CrossRefGoogle Scholar
Melott, A.L. & Thomas, B.C. (2009). Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage. Paleobiology 35, 311320 (http://arxiv.org/abs/0809.0899).CrossRefGoogle Scholar
Melott, A.L., Thomas, B.C., Hogan, D.P., Ejzak, L.M. & Jackman, C.H. (2005). Climatic and biogeochemical effects of a galactic gamma ray burst. Geophys. Res. Lett. 32, L14808 (http://arxiv.org/abs/astro-ph/0503625).CrossRefGoogle Scholar
Melott, A.L., Lieberman, B., Laird, C., Martin, L., Medvedev, M., Thomas, B., Cannizzo, J., Gehrels, N. & Jackman, C. (2004). Did a gamma-ray burst initiate the late Ordovician mass extinction? Int. J. Astrobiol. 3, 5561 (http://arxiv.org/abs/astro-ph/0309415).CrossRefGoogle Scholar
Meszaros, P. (2001). Gamma-ray bursts: accumulating afterglow implications, progenitor clues, and prospects. Science 291, 7984 (http://arxiv.org/abs/astro-ph/0102255).CrossRefGoogle ScholarPubMed
Neale, P.J. (2000). Spectral weighting functions for quantifying effects of UV radiation in marine ecosystems. In The Effects of UV Radiation in the Marine Environment, Environ. Chem. Ser., eds de Mora, S.J. et al. , p. 72. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
O'Brien, P.T. & Willingale, R. (2007). Gamma-ray bursts in the Swift era. Astrophys. Space Sci. 311, 167175.CrossRefGoogle Scholar
Piran, T. (2005). The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 11431210 (http://arxiv.org/abs/astro-ph/0405503).CrossRefGoogle Scholar
Reid, G.C. & McAfee, J.R. (1978). Effects of intense stratospheric ionisation events. Nature 275, 489492.CrossRefGoogle Scholar
Scalo, J. & Wheeler, J.C. (2002). Astrophysical and astrobiological implications of gamma-ray burst properties. Astrophys. J. 566, 723737 (http://arxiv.org/abs/astro-ph/9912564).CrossRefGoogle Scholar
Setlow, R.B. (1974). The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis. Proc. Nat. Acad. Sci. USA 71, 33633366.CrossRefGoogle ScholarPubMed
Smith, D.S., Scalo, J. & Wheeler, J.C. (2004). Transport of ionizing radiation in terrestrial-like exoplanet atmospheres. Icarus 171, 229253 (http://arxiv.org/abs/astro-ph/0308311).CrossRefGoogle Scholar
Smith, R.C., Baker, K.S., Holm-Hansen, O. & Olson, R. (1980). Photoinhibition of photosynthesis in natural waters. Photochem. Photobio. 31, 585592.CrossRefGoogle Scholar
Thomas, B.C. & Honeyman, M.D. (2008). Amphibian nitrate stress as an additional terrestrial threat from astrophysical ionizing radiation events? Astrobiology 8, 731733 (http://arxiv.org/abs/0804.3604).CrossRefGoogle ScholarPubMed
Thomas, B.C. & Melott, A.L. (2006). Gamma-ray bursts and terrestrial planetary atmospheres. New J. Phys. 8, 120133 (http://arxiv.org/abs/astro-ph/0601711).CrossRefGoogle Scholar
Thomas, B.C. et al. (2005a). Terrestrial ozone depletion due to a Milky Way gamma-ray burst. Astrophys. J. Lett. 622, L153L156 (http://arxiv.org/abs/astro-ph/0411284).CrossRefGoogle Scholar
Thomas, B.C. et al. (2005b). Gamma-ray bursts and the Earth: Exploration of atmospheric, biological, climatic and biogeochemical effects. Astrophys. J. 634, 509533 (http://arxiv.org/abs/astro-ph/0505472).CrossRefGoogle Scholar
Thorsett, S.E. (1995). Terrestrial implications of cosmological gamma-ray bursts. Astrophys. J. Lett. 444, L53L55 (http://arxiv.org/abs/astro-ph/9501019).CrossRefGoogle Scholar
Vincent, W.F. & Neale, P.J. (2000). Mechanisms of UV damage to aquatic organisms. In The Effects of UV Radiation in the Marine Environment, Environ. Chem. Ser., eds de Mora, S.J. et al. , p. 149. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Virgili, F.J., Liang, E.-W. & Zhang, B. (2009). Low-luminosity gamma-ray bursts as a distinct GRB population: a Monte Carlo analysis. Mon. Not. Roy. Astron. Soc. 392, 91–103 (http://arxiv.org/abs/0801.4751).CrossRefGoogle Scholar
Zhang, Z.-B. & Choi, C.-S. (2008). An analysis of the durations of swift gamma-ray bursts. Astron. Astrophys. 484, 293297 (http://arxiv.org/abs/0708.4049).CrossRefGoogle Scholar