Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T12:19:24.322Z Has data issue: false hasContentIssue false

Instrumentation for the search for habitable ecosystems in the future exploration of Europa and Ganymede

Published online by Cambridge University Press:  12 February 2010

J. Chela-Flores
Affiliation:
The Abdus Salam ICTP, Strada Costiera 11, 34014 Trieste, Italia, and Instituto de Estudios Avanzados, IDEA, Caracas1015A, República Bolivariana de Venezuela e-mail: chelaf@ictp.it

Abstract

The extensive evidence of an ocean over a silicate nucleus makes Europa a candidate for the emergence of a second evolutionary pathway of autochthonous life. We argue that the most urgent question in astrobiology is the origin of habitable ecosystems (a question in geochemistry), rather than the alternative search for the origin of life itself (a question in chemical evolution). Since certain Solar System bodies may share a similar geophysical past with Earth, our more modest approach forces upon us the question: Can available instrumentation be the ‘pioneer’ in the discovery of habitable ecosystems in geophysical environments similar to the early Earth? It will be shown that a central piece in this dilemma is the chemical element sulphur (S). The Europan non-ice surficial elements that distort the water–ice absorption bands were found to be widespread, patchy and, most likely, endogenous. The Galileo Mission discovered these patches, which were subsequently confirmed by the 2007 flyby of New Horizons. We argue that penetrators should be inserted into orbital probes in the future exploration of Jupiter's System. Penetrators provide what could be a key instrument in the exploration of Europa, given the adverse space weather in its environment due to the Jovian magnetosphere and radiation. Indeed, there are alternative views on the radiation-induced S-cycles produced on the surficial molecules that are present on the icy surface; however, S is common to both interpretations. Hence, mass spectrometry should be an essential part of any future payload. The largest S-fractionations are due to microbial reduction and not to thermochemical processes, allowing a test of the hypothesis for the origin of habitable ecosystems. The microbial fractionation of stable S-isotopes argue in favour of penetrators for the survey of the surfaces of both Europa and Ganymede.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.D., Lau, E.L., Sjogren, W.L., Schubert, G. & Moore, W.B. (1997). Science 276, 12361239.CrossRefGoogle Scholar
Blanc, M. et al. (2009). Exp. Astron. 23, 849892.CrossRefGoogle Scholar
Bland, M.T., Showman, A.P. & Tobie, G. (2009). Icarus 200, 207221.CrossRefGoogle Scholar
Brunner, B. & Bernasconi, S.M. (2005). Geochim. Cosmochim. Acta 69, 47594771.CrossRefGoogle Scholar
Canfield, D.E. (2006). Nature 440, 426427.CrossRefGoogle Scholar
Canfield, D. & Thamdrup, B. (1994). Science 266, 19731975.CrossRefGoogle Scholar
Carlson, R.W., Anderson, M.S., Johnson, R.E., Schulman, M.B. & Yavrouian, A.H. (2002). Icarus 157, 456463.CrossRefGoogle Scholar
Carlson, R.W., Anderson, M.S., Mehlman, R. & Johnson, R.E. (2005). Icarus 177, 461471.CrossRefGoogle Scholar
Carlson, R.W., Johnson, R.E. & Anderson, M.S. (1999). Science 286, 9799.CrossRefGoogle Scholar
Chela-Flores, J., Bhattacherjee, A.B., Dudeja, S., Kumar, N. & Seckbach, J. (2009). Can the biogenicity of Europa's surfical sulfur be tested simultaneously with penetrators and ion traps? Geophys. Res. Abstr. 11, EGU2009-0, 2009, EGU General Assembly 2009. Vienna, 22 April, http://www.ictp.it/~chelaf/EGU2009JCTetal.pdf.Google Scholar
Chela-Flores, J. & Kumar, N. (2008). Int. J. Astrobiol. 7, 263269, http://www.ictp.it/~chelaf/JCFKumar.pdf.CrossRefGoogle Scholar
Chyba, C.F. & Phillips, C.B. (2002). Orig. Life Evol. Biosph. 32, 4768.CrossRefGoogle Scholar
Cooper, J.F., Johnson, R.E., Mauk, B.H., Garrett, H.B. & Gehrels, N. (2001). Icarus 149, 133159.CrossRefGoogle Scholar
Dalton, J.B., Prieto-Ballesteros, O., Kargel, J.S., Jamieson, C.S., Jolivet, J. & Quinn, R. (2005). Icarus 177, 472490.CrossRefGoogle Scholar
Detmers, J., Brüchert, V., Habich, K.S. & Kuever, J. (2001). Appl. Environ. Microbiol. 67, 888894.CrossRefGoogle Scholar
Fagents, S.A. (2003). J. Geophys. Res. 108(E12), 5139.Google Scholar
Fanale, F.P. et al. (1999). Icarus 139, 179188.CrossRefGoogle Scholar
Gaidos, E.J., Nealson, K.H. & Kirschvink, J.L. (1999). Science 284, 16311633.CrossRefGoogle Scholar
Gavit, S.A. & Powell, G. (1996). Acta Astronaut. 39, 273280.CrossRefGoogle Scholar
Gowen, R. et al. (2009). Looking for astrobiological signatures with penetrators on Europa. In Physical and Engineering Sciences Exploratory Workshops, W08-115: Biosignatures on Exoplanets; The Identity of Life, 22–26 June 2009, Mulhouse, France, http://www.ictp.it/~chelaf/ESFsummary.pdf.Google Scholar
Grady, M. & Wright, I. (2006). Philos. Trans. R. Soc. London, Ser. B 361, 17031713.CrossRefGoogle Scholar
Grasset, O., Lebreton, J.-P., Blanc, M., Dougherty, M., Erd, C, Greeley, R., Pappalardo, B. & the Joint Science Definition Team (2009). The Jupiter Ganymede Orbiter as part of the ESA/NASA Europa Jupiter System Mission (EJSM). EPSC Abstracts 4, EPSC2009-784, European Planetary Science Congress.Google Scholar
Greenberg, R. (2005). Europa, the Ocean Moon, p. 136. Springer, Berlin.Google Scholar
Grice, K. et al. (2005). Science 307, 706709.CrossRefGoogle Scholar
Grundy, W.M. et al. (2007). Science 318, 234236.CrossRefGoogle Scholar
Harrison, A.G. & Thode, H.G. (1958). Trans. Faraday Soc. 54, 8492.CrossRefGoogle Scholar
Hoefs, J. (2009). Stable Isotope Geochemistry. 6th edn, pp. 7677. Springer, Berlin, Heidelberg.Google Scholar
Horvath, J. et al. (1997). Searching for ice and ocean biogenic activity on Europa and Earth. In Instruments, Methods and Missions for Investigation of Extraterrestrial Microorganisms (Proc. SPIE, vol. 3111), ed. Hoover, R.B., pp. 490500, http://www.ictp.it/~chelaf/searching_for_ice.html.CrossRefGoogle Scholar
Jannasch, H.W. & Mottl, M.J. (1985). Science 229, 717725.CrossRefGoogle Scholar
Kargel, J.S., Kaye, J.Z., Head, J.W. III, Marion, G.M., Sassen, R., Crowley, J.K., Ballesteros, O.P., Grant, S.A. & Hogenboom, D.L. (2000). Icarus 148, 226265.CrossRefGoogle Scholar
Kemp, A.L.W. & Thode, H.G. (1968). Geochim. Cosmochim. Acta 32, 7191.CrossRefGoogle Scholar
Khurana, K.K., Pappalardo, R.T., Murphy, N. & Denk, T. (2007). Icarus 191, 193202.CrossRefGoogle Scholar
Kivelson, M.G., Khurana, K.K., Joy, S., Russell, C.T., Southwood, D.J., Walker, R.J. & Polanskey, C. (1997). Science 276, 12391241.CrossRefGoogle Scholar
Kiyosu, Y. & Krouse, H.R. (1990). Geochem. J. 24, 2127.CrossRefGoogle Scholar
Krouse, H.R., Viau, CA., Eliuk, L.S., Ueda, A. & Halas, S. (1988). Nature 333, 415419.CrossRefGoogle Scholar
Lorenz, R.D., Stiles, B.W., Kirk, R.L., Allison, M.D., Persi del Marmo, P., Iess, L., Lunine, J.I., Ostro, S.J. & Hensley, S. (2008). Science 319, 16491651.CrossRefGoogle Scholar
Machel, H.G. (2001). Sediment. Geol. 140, 143175.CrossRefGoogle Scholar
Machel, H.G., Krouse, H.R. & Sassen, R. (1995). Appl. Geochem. 10, 373389.CrossRefGoogle Scholar
McCollom, T.M. (1999). J. Geochem. Res. 104, 3072930742.Google Scholar
McCord, T.B. et al. (1998). J. Geophys. Res. 103, 86038626.CrossRefGoogle Scholar
McCord, T.B. et al. (1999). J. Geophys. Res. 104, 1182711851.CrossRefGoogle Scholar
McCord, T.B., Hansen, G.B. & Hibbitts, C.A. (2001). Science 292, 15231525.CrossRefGoogle Scholar
McCready, R.G.L. (1975). Geochim. Cosmochim. Acta 39, 13951401.CrossRefGoogle Scholar
McEwen, A.S. (1986). J. Geophys. Res. 91, 80778097.CrossRefGoogle Scholar
Mikucki, J.A., Pearson, A., Johnston, D.T., Turchyn, A.V., Farquhar, J., Schrag, D.P., Anbar, A.D., Priscu, J.C. & Lee, P.A. (2009). Science 324, 397400.CrossRefGoogle Scholar
Mizutani, H., Fujimura, A., Hayakawa, M., Tanaka, S., Shiraishi, H. & Yoshida, S. (2000). LUNAR-A MISSION: science objectives and instruments. In ICEUM-4 Proc. of Fourth International Conf. on the Exploration and Utilization of the Moon, pp. 107114.Google Scholar
Oberst, J., Schreiner, B., Giese, B., Neukum, G., Head, J.W., Pappalardo, R.T. & Helfenstein, P. (1999). Icarus 140, 283293.CrossRefGoogle Scholar
Ono, S., Shanks, W.C., Rouxel, O. & Rumble, D. (2007). Geochim. Cosmochim. Acta 71, 11701182.CrossRefGoogle Scholar
Priscu, J.C. et al. (1999). Science 286, 21412144.CrossRefGoogle Scholar
Postberg, F., Kempf, S., Schmidt, J., Brilliantov, N., Beinsen, A., Abel, B., Buck, U. & Srama, R. (2009). Nature 459, 10981101.CrossRefGoogle Scholar
Rees, C.E. (1973). Geochim. Cosmochim. Acta 37, 11411162.CrossRefGoogle Scholar
Reysenbach, A.L. & Shock, E. (2002). Science 296, 10771082.CrossRefGoogle Scholar
Rollinson, H. (2007). Early Earth Systems, p. 225. Blackwell, London.Google Scholar
Schopf, J.W. (2001). Cradle of Life: The Discovery of Earth's Earliest Fossils, p. 336. Princeton University Press, Chichester, West Sussex.Google Scholar
Shen, Y. & Buick, R. (2004). Earth Sci. Rev. 64, 243272.CrossRefGoogle Scholar
Shiraishi, H., Tanaka, S., Fujimura, A. & Hayakawa, H. (2008). Adv. Space Res. 42, 386393.CrossRefGoogle Scholar
Shock, E.L. (2001). Geochemical habitats in hydrothermal systems. In The First Steps of Life in the Universe, eds Chela-Flores, J., Owen, T. & Raulin, F., pp. 179185. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
Singer, E. (2003). Vital clues from Europa. In New Scientist magazine, Issue N. 2414, pp. 2223. http://www.ictp.it/~chelaf/VitalClues.pdf.Google Scholar
Smith, A. et al. (2008). Exp. Astron. 10.1007/s10686-008-9109-6 (August 21, 2008), http://www.ictp.it/~chelaf/Penetrator.pdf.Google Scholar
Smith, B.E., Fricker, H.A., Joughin, I.R. & Tulaczyk, S. (2009). J. Glaciol. 55, 573595.CrossRefGoogle Scholar
Spohn, T. & Schubert, G. (2003). Icarus 161, 456467.CrossRefGoogle Scholar
Surkov, Y.A. & Kremnev, R.S. (1998). Planet. Space Sci. 46, 16891696.CrossRefGoogle Scholar
Thomson, R.E. & Delaney, J.R. (2001). J. Geophys. Res. 106, 1235512365.CrossRefGoogle Scholar
Ueno, Y., Yamada, K., Yoshida, N., Maruyamaand, S. & Isozaki, Y. (2006). Nature 440, 516519.CrossRefGoogle Scholar
Ulamec, S., Biele, J., Funke, O. & Engelhardt, M. (2007). Rev. Environ. Sci. Biotech. 6, 7194.CrossRefGoogle Scholar
Weiss, P., Yung, K.L., Ng., T.C., Komle, N., Kargl., G. & Kaufmann, E. (2008). Planet. Space Sci. 56, 12801292.CrossRefGoogle Scholar
Whitman, W.B., Coleman, D.C. & Wiebe, W.J. (1998). PNAS 95, 6598–6583.CrossRefGoogle Scholar
Wortmann, U.G., Bernasconi, S.M. & Bottcher, M.E. (2001). Geology 29, 647650.2.0.CO;2>CrossRefGoogle Scholar
Yamada, R. et al. (2009) Planet. Space Sci. 57, 751763.CrossRefGoogle Scholar
Zakharov, A.V. & Fechtig, H. (1994). Phil. Trans. Phys. Sci. Eng. 349, 295307.Google Scholar
Zolotov, M., Yu., & Shock, E.L. (2001). J. Geophys. Res. 106, 3281532828.CrossRefGoogle Scholar