Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T10:17:12.928Z Has data issue: false hasContentIssue false

Jupiter – friend or foe? IV: the influence of orbital eccentricity and inclination

Published online by Cambridge University Press:  16 February 2012

J. Horner*
Affiliation:
Department of Astrophysics and Optics, School of Physics, University of New South Wales, Sydney 2052, Australia
B. W. Jones
Affiliation:
Astronomy Discipline, Department of Physics, Astronomy, and Space Science, The Open University, Milton Keynes MK7 6AA, UK

Abstract

For many years, it has been assumed that Jupiter has prevented the Earth from being subject to a punishing impact regime that would have greatly hindered the development of life. Here, we present the fourth in a series of dynamical studies investigating this hypothesis. In our earlier work, we examined the effect of Jupiter's mass on the impact rate experienced by the Earth. Here, we extend that approach to consider the influence of Jupiter's orbital eccentricity and inclination on the impact rate from asteroidal bodies and short-period comets. We first considered scenarios in which Jupiter's orbital eccentricity was somewhat higher and somewhat lower than that in our Solar System, for a variety of ‘Jupiter’ masses. We find that Jupiter's orbital eccentricity plays a moderate role in determining the impact flux at Earth, with more eccentric orbits resulting in a noticeably higher impact rate of asteroids than is the case for more circular orbits. This is particularly pronounced at high ‘Jupiter’ masses. For the short-period comets, the same effect is clearly apparent, albeit to a much lesser degree. The flux of short-period comets impacting the Earth is slightly higher for more eccentric Jovian orbits. We also considered scenarios in which Jupiter's orbital inclination was greater than that in our Solar System. Increasing Jupiter's orbital inclination greatly increased the flux of asteroidal impactors upon the Earth. However, at the highest tested inclination, the disruption to the Asteroid belt was so great that the belt would be entirely depleted after an astronomically short period of time. In such a system, the impact flux from asteroid bodies would therefore be very low, after an initial period of intense bombardment. By contrast, the influence of Jovian inclination on impacts from short-period comets was very small. A slight reduction in the impact flux was noted for the moderate and high inclination scenarios considered in this work – the results for inclinations of 5° and 25° were essentially identical.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borucki, W.J., Koch, D.G., Basri, G., Batalha, N., Brown, T.M., Bryson, S.T., Caldwell, D., Christensen-Dalsgaard, J., Cochran, W.D., DeVore, E. et al. (2011a). Astrophys. J. 736, 19.CrossRefGoogle Scholar
Borucki, W.J., Koch, D.H., Basri, G., Batalha, N., Boss, A., Brown, T.M., Caldwell, D., Christensen-Dalsgaard, J., Cochran, W.D., DeVore, E. et al. (2011b). Astrophys. J. 728, 117.CrossRefGoogle Scholar
Chambers, J.E. (1999). Mon. Not. R. Astronom. Soc. 304, 793799.CrossRefGoogle Scholar
Chapman, C.R. & Morrison, D. (1994). Nature 367, 3340.CrossRefGoogle Scholar
Duncan, M. & Levison, H.F. (1997). Science 276, 16701672.CrossRefGoogle Scholar
Duncan, M., Quinn, T. & Tremaine, S. (1988). Astrophys. J. 328, L69L73.CrossRefGoogle Scholar
Emel'yaneko, V.V., Asher, D.J. & Bailey, M.E. (2005). Mon. Not. R. Astron. Soc. 361, 13451351.CrossRefGoogle Scholar
Greaves, J.S. (2006). Int. J. Astrobiol. 5, 187190.CrossRefGoogle Scholar
Holman, M.J. & Wisdom, J. (1993). Astronomical Journal. 105, 19871999.CrossRefGoogle Scholar
Horner, J. & Evans, N.W. (2002). Mon. Not. R. Astron. Soc. 335, 641654.CrossRefGoogle Scholar
Horner, J., Evans, N.W. & Bailey, M.E. (2004a). Mon. Not. R. Astron. Soc. 354, 798810.CrossRefGoogle Scholar
Horner, J., Evans, N.W. & Bailey, M.E. (2004b). Mon. Not. R. Astron. Soc. 355, 321329.CrossRefGoogle Scholar
Horner, J., Evans, N.W., Bailey, M.E. & Asher, D.J. (2003). Mon. Not. R. Astron. Soc. 343, 10571066.CrossRefGoogle Scholar
Horner, J. & Jones, B.W. (2008a). Astron. Geophys. 49, 1.221.27.CrossRefGoogle Scholar
Horner, J. & Jones, B.W. (2008b). Int. J. Astrobiol. 7, 251261.CrossRefGoogle Scholar
Horner, J. & Jones, B.W. (2009). Int. J. Astrobiol. 8, 7580.CrossRefGoogle Scholar
Horner, J. & Jones, B.W. (2010a). Int. J. Astrobiol. 9, 273291.CrossRefGoogle Scholar
Horner, J. & Jones, B.W. (2010b). Astron. Geophys. 51, 6.166.22.CrossRefGoogle Scholar
Horner, J. & Jones, B.W. (2011). Astron. Geophys. 52, 1.161.20.Google Scholar
Horner, J., Jones, B.W. & Chambers, J. (2010). Int. J. Astrobiol. 9, 110.CrossRefGoogle Scholar
Horner, J. & Lykawka, P.S. (2010a). Mon. Not. R. Acad. Soc. 402, 1320.CrossRefGoogle Scholar
Horner, J. & Lykawka, P.S. (2010b). Int. J. Astrobiol. 9, 227234.CrossRefGoogle Scholar
Horner, J., Mousis, O., Petit, J.-M. & Jones, B.W. (2009). Planet. Space Sci. 57, 13381345.CrossRefGoogle Scholar
Jones, H.R.A., Paul Butler, R., Tinney, C.G., Marcy, G.W., Penny, A.J., McCarthy, C., Carter, B.D. & Pourbaix, D. (2002). Mon. Not. R. Astron. Soc. 333, 871875.CrossRefGoogle Scholar
Laasko, T., Rantala, J. & Kaasalainen, M. (2006). Astron. Astrophys. 456, 373378.Google Scholar
Levison, H.F., Dones, L. & Duncan, M.J. (2001). Astronom. J. 121, 22532267.CrossRefGoogle Scholar
Mayor, M. & Queloz, D. (1995). Nature 378, 355359.CrossRefGoogle Scholar
McArthur, B.E., Benedict, G.F., Barnes, R., Martioli, E., Korzennik, S., Nelan, E. & Butler, R.P. (2010). Astrophys. J. 715, 12031220.CrossRefGoogle Scholar
Morbidelli, A., Bottke, W.F., Froeschle, Ch. & Michel, P. (2002). Asteroids III, pp. 409422. University of Arizona Press, Tucson, AZ.Google Scholar
Mordasini, C., Mayor, M., Udry, S., Lovis, C., Ségransan, D., Benz, W., Bertaux, J.-L., Bouchy, F., Lo Curto, G., Moutou, C. et al. (2011). Astron. Astrophys. 526, A111.CrossRefGoogle Scholar
Moutou, C., Mayor, M., Lo Curto, G., Udry, S., Bouchy, F., Benz, W., Lovis, C., Naef, D., Pepe, F., Queloz, D. & Santos, N.C. (2009). Astron. Astrophys. 496, 513519.CrossRefGoogle Scholar
O'Brien, D.P. & Sykes, M.V. (2011). Space Sci. Rev. 163, 4161.CrossRefGoogle Scholar
O'Toole, S.J., Jones, H.R.A., Tinney, C.G., Butler, R.P., Marcy, G.W., Carter, B., Bailey, J. & Wittenmyer, R.A. (2009). Astrophys. J. 701, 17321741.CrossRefGoogle Scholar
Pepe, F., Mayor, M., Queloz, D., Benz, W., Bonfils, X., Bouchy, F., Lo Curto, G., Lovis, C., Mégevand, D., Moutou, C., et al. (2004). Astron. Astrophys. 423, 385389.CrossRefGoogle Scholar
Tinney, C.G., Wittenmyer, R.A., Butler, R.P., Jones, H.R.A., O’Toole, S.J., Bailey, J.A., Carter, B.D. & Horner, J. (2011). Astrophys. J. 732, 31.CrossRefGoogle Scholar
Ward, W.R. & Brownlee, D. (2000). Rare Earth: Why Complex Life is Uncommon in the Universe, New York : Copernicus, c2000., pp. 238239.Google Scholar
Wetherill, G.W. (1994). Astrophys. Space Sci. 212, 2332.CrossRefGoogle Scholar
Wiegert, P. & Tremaine, S. (1999). Icarus 137, 84121.CrossRefGoogle Scholar