Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T04:19:34.547Z Has data issue: false hasContentIssue false

Molecular microbial community structure of the Regenerative Enclosed Life Support Module Simulator air system

Published online by Cambridge University Press:  06 March 2007

Christine Moissl
Affiliation:
Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Naofumi Hosoya
Affiliation:
Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
James Bruckner
Affiliation:
Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Tara Stuecker
Affiliation:
Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Monsi Roman
Affiliation:
ECLS Design and Development Branch, NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA e-mail: kjvenkat@jpl.nasa.gov
Kasthuri Venkateswaran
Affiliation:
Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

Abstract

The Regenerative Enclosed Life Support Module Simulator (REMS) was designed to simulate the conditions aboard the International Space Station (ISS). This unique terrestrial, encapsulated environment for humans and their associated organisms allowed investigations into the microbial communities within an enclosed habitat system, primarily with respect to diversity, phylogeny and the possible impact on human health. To assess time- and/or condition-dependent changes in microbial diversity within REMS, a total of 27 air samples were collected during three consecutive months. The microbial burden and diversity were elucidated using culture-dependent and culture-independent molecular methods. The results indicate that during controlled conditions the total microbial burden detected by culture-dependent techniques (below a detectable level to 102 cells m−3 of air) and intracellular ATP assay was significantly low (102–103 cells m−3 of air), but increased during the uncontrolled post-operation phase (∼104 cells m−3 of air). Only Gram-positive and α-proteobacteria grew under tested culture conditions, with a predominant occurrence of Methylobacterium radiotolerans, and Sphingomonas yanoikuyae. Direct DNA extraction and 16S rDNA sequencing methodology revealed a broader diversity of microbes present in the REMS air (51 species). Unlike culture-dependent analysis, both Gram-positive and proteobacteria were equally represented, while members of a few proteobaterial groups dominated (Rhodopseudomonas, Sphingomonas, Acidovorax, Ralstonia, Acinetobacter, Pseudomonas, and Psychrobacter). Although the presence of several opportunistic pathogens warrants further investigation, the results demonstrated that routine maintenance such as controlling the humidity, crew’s daily cleaning, and air filtration were effective in reducing the microbial burden in the REMS.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amann, R.I., Ludwig, W. & Schleifer, K.H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143169.CrossRefGoogle ScholarPubMed
Benardini, J., Ballinger, J., Crawford, R., Roman, M., Sumner, R. & Venkateswaran, K. (2005). International Space Station Internal Thermal Coolant System: an initial assessment of the microbial communities within fluids from ground support and flight hardware. In Proc. 34th Int. Conf. on Environmental Systems, Rome, Italy, July, 2005. SAE Technical Paper. 2005-01-059.Google Scholar
Boyden, D.G. (1962). In The Bacterial Flora in Fleet Ballistic Missile Submarines During Prolonged Submergence. U.S. Naval Medical Research Laboratory. Bureau of Medicine and Surgery, Navy Department, Arlington, VA.Google Scholar
Britschgi, T.B. & Giovannoni, S.J. (1991). Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 57, 17071713.CrossRefGoogle ScholarPubMed
Burge, H.A., Pierson, D.L., Groves, T.O., Strawn, K.F. & Mishra, S.K. (2000). Dynamics of airborne fungal populations in a large office building. Curr. Microbiol. 40, 1016.CrossRefGoogle Scholar
Carasquillo, R.L. (2005). ISS ECLSS technology evolution for exploration. In Proc. 43rd AIAA Aerospace Sciences and Exhibit, Reno, NV, 10–13 January 2005, pp. 18. paper AIAA-205-337.Google Scholar
Carter, L., Tabb, D., Tatara, J.D. & Mason, R.K. (2005). Performance qualification test of the ISS Water Processor Assembly (WPA) expendables. In Proc. 35th Int. Conf. on Environmental Systems. SAE Technical Paper 2005-01-2837.CrossRefGoogle Scholar
Castro, V.A., Thrasher, A.N., Healy, M., Ott, C.M. & Pierson, D.L. (2004). Microbial characterization during the early habitation of the International Space Station. Microbiol. Ecol. 47, 119126.CrossRefGoogle ScholarPubMed
Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J.P. & Raoult, D. (2000). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol. 38, 36233630.CrossRefGoogle ScholarPubMed
Edmiston, C.E. Jr., Seabrook, G.R., Cambria, R.A., Brown, K.R., Lewis, B.D., Sommers, J.R., Krepel, C.J., Wilson, P.J., Sinski, S. & Towne, J.B. (2005). Molecular epidemiology of microbial contamination in the operating room environment: is there a risk for infection? Surgery 138, 579582.CrossRefGoogle Scholar
Favero, M.S., McDade, J.J., Robertsen, J.A., Hoffman, R.K. & Edwards, R.W. (1968). Microbiological sampling of surfaces. J. Appl. Bacteriol. 31, 336343.CrossRefGoogle ScholarPubMed
Ferguson, J., Taylor, G.R. & Mieszkuc, B.J. (1975). In Microbiological Investigations, pp. 83103. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC.Google Scholar
Gilchrist, M.J., Kraft, J.A., Hammond, J.G., Connelly, B.L. & Myers, M.G. (1986). Detection of Pseudomonas mesophilica as a source of nosocomial infections in a bone marrow transplant unit. J. Clin. Microbiol. 23, 10521055.CrossRefGoogle Scholar
Hiraishi, A., Furuhata, K., Matsumoto, A., Koike, K.A., Fukuyama, M. & Tabuchi, K. (1995). Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl. Environ. Microbiol. 61, 20992107.CrossRefGoogle ScholarPubMed
ISO (1999). ISO 14644-1 Part 1: Classification of air cleanliness. http://www.iest.org/iso/iso1.htmGoogle Scholar
Johnson, J.L. (1981). Genetic characterization. In Manual of Methods for General Bacteriology, eds Gerhardt, P., Murray, R.G.E., Costilaw, R.N., Nester, E.W., Wood, W.A., Krieg, N.R. & Phillips, G.B., American Society for Microbiology, Washington, DC.Google Scholar
Karl, D. (1980). Cellular nucleotide measurements and applications in microbial ecology. Microbiol. Rev. 44, 739796.CrossRefGoogle Scholar
Kawamura, Y., Li, Y., Liu, H., Huang, X., Li, Z. & Ezaki, T. (2001). Bacterial population in Russian space station ‘Mir’. Microbiol. Immunol. 45, 819828.CrossRefGoogle ScholarPubMed
Koenig, D.W. & Pierson, D.L. (1997). Microbiology of the Space Shuttle water system. Water Sci. Technol. 35, 5964.CrossRefGoogle ScholarPubMed
Koskinen, R., Ali-Vehmas, T., Kampfer, P., Laurikkala, M., Tsitko, I., Kostyal, E., Atroshi, F. & Salkinoja-Salonen, M. (2000). Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems. J. Appl. Microbiol. 89, 687696.CrossRefGoogle ScholarPubMed
La, Duc M.T., Kern, R. & Venkateswaran, K. (2004). Microbial monitoring of spacecraft and associated environments. Microbiol. Ecol. 47, 150158.Google Scholar
La, Duc M.T., Nicholson, W., Kern, R. & Venkateswaran, K. (2003). Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ. Microbiol. 5, 977985.Google Scholar
Lane, D.J. (1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, eds Stackebrandt, E. & Goodfellow, M., pp. 115163. Wiley, New York.Google Scholar
Levine, H.B. & Cobet, A.B. (1970). The Tektite-I dive. Mycological aspects. Arch. Environ. Health. 20, 500505.CrossRefGoogle ScholarPubMed
Liesack, W. & Stackebrandt, E. (1992). Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 174, 50725078.CrossRefGoogle ScholarPubMed
Ludwig, W. et al. (2004). Nucleic Acids Res. 32, 13631371.CrossRefGoogle Scholar
Maidak, B.L. et al. (2000). The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28, 173174.CrossRefGoogle ScholarPubMed
Mehta, S.K., Cohrs, R.J., Forghani, B., Zerbe, G., Gilden, D.H. & Pierson, D.L. (2004). Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J. Med. Virol. 72, 174179.CrossRefGoogle ScholarPubMed
Mehta, S.K., Stowe, R.P., Feiveson, A.H., Tyring, S.K. & Pierson, D.L. (2000). Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J. Infection Discovery 182, 17611764.CrossRefGoogle ScholarPubMed
Morris, J.E. (1972). Microbiology of the submarine environment. Proc. R. Soc. Med. 65, 799800.Google ScholarPubMed
NASA (1980). NASA standard procedures for the microbiological examination of space hardware. In Jet Propulsion Laboratory Communication, NHB 5340.1B, Jet Propulsion Laboratory, Pasadena, CA.Google Scholar
Newcombe, D.A., Schuerger, A.C., Benardini, J.N., Dickinson, D., Tanner, R. & Venkateswaran, K. (2005). Survival of spacecraft-associated microorganisms under simulated Martian UV irradiation. Appl. Environ. Microbiol. 71, 81478156.CrossRefGoogle ScholarPubMed
Novikova, N.D. (2004). Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microbiol. Ecol. 47, 127132.CrossRefGoogle ScholarPubMed
Novikova, N.D., De, Boever P., Poddubko, S., Deshevaya, E., Polikarpov, N., Rakova, N., Coninx, I. & Mergeay, M. (2006). Survey of environmental biocontamination on board the International Space Station. Res. Microbiol. 157, 512.CrossRefGoogle ScholarPubMed
Oliver, J.D. (2005). The viable but nonculturable state in bacteria. J. Microbiol. 43, 93100.Google ScholarPubMed
Oliver, J.D. & Bockian, R. (1995). In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl. Environ. Microbiol. 61, 26202623.CrossRefGoogle ScholarPubMed
Oliver, J.D., Dagher, M. & Linden, K. (2005). Induction of Escherichia coli and Salmonella typhimurium into the viable but nonculturable state following chlorination of wastewater. J. Water Health 3, 249257.CrossRefGoogle ScholarPubMed
Ott, M. (1994). Genetic approaches to study Legionella pneumophila pathogenicity. FEMS Microbiol. Rev. 14, 161176.CrossRefGoogle ScholarPubMed
Pierson, D., Ott, C.M. & Groves, T.O. (2002). Characterization of microbial activity in the chamber systems and environment, pp. 229259. Univelt, San Diego, CA.Google Scholar
Pierson, D.L. (2001). Microbial contamination of spacecraft. Gravitational Space Biol. Bull. 14, 16.Google ScholarPubMed
Samsonov, N.M., Bobe, L.S., Gavrilov, L.I., Novikov, V.M., Farafonov, N.S., Grigoriev, J.I., Zaitsev, E.N., Romanov, S.J., Grogoriev, A.I. & Sinjak, J.E. (2000) Long-duration space mission regenerative life support. Acta Astronaut. 47, 129138.CrossRefGoogle ScholarPubMed
Satomi, M., La, Duc M.T. & Venkateswaran, K. (2006). Bacillus safensis sp. nov., isolated from spacecraft and assembly facility surfaces. Int. J. Syst. Evol. Microbiol. 56, 17351740.CrossRefGoogle ScholarPubMed
Stackebrandt, E. & Embley, T.M. (2000). Diversity of uncultured microorganisms in the environment. In Nonculturable Microorganisms in the Environment, eds Colwell, R.R. & Grimes, D.J., pp. 5775. ASM Press, Washington, DC.CrossRefGoogle Scholar
Stenberg, B., Eriksson, N., Hansson, Mild K., Höög, J., Sandström, M., Sundell, J. & Wall, S. (1993). An interdisciplinary study of the ‘sick building-syndrome’ (SBS). In Proc. Indoor Air’93. The Office Illness Project in northern Sweden. Helsinki, Finland.Google Scholar
Stuecker, T.N., Newcombe, D.A., Murdock, E., Sumner, R. & Venkateswaran, K. (2005). Characterization of the VBNC state of two opportunistic pathogens isolated from ISS drinking water: implications for biocide treatment and bioburden detection. In Proc. 34th Int. Conf. on Environmental Systems, July, 2005, Rome, Italy. SAE Technical Paper. 2005-01-058.Google Scholar
Suzuki, M.T., Taylor, L.T. & DeLong, E.F. (2000). Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl. Environ. Microbiol. 66, 46054614.CrossRefGoogle ScholarPubMed
Tang, Y.W., Ellis, N.M., Hopkins, M.K., Smith, D.H., Dodge, D.E. & Persing, D.H. (1998). Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic Gram-negative bacilli. J. Clin. Microbiol. 36, 36743679.CrossRefGoogle ScholarPubMed
Tang, Y.W., Von Graevenitz, A., Waddington, M.G., Hopkins, M.K., Smith, D.H., Li, H., Kolbert, C.P., Montgomery, S.O. & Persing, D.H. (2000). Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis. J. Clin. Microbiol. 38, 16761678.CrossRefGoogle ScholarPubMed
Taylor, G., Graves, R.C., Brockett, R.M., Ferguson, J.K. & Mieszkuc, B.J. (1977). Skylab environmental and crew microbiological studies. In Biomedical Results from Skylab, eds Johnston, R. & Dietlein, L.F., pp. 5363. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC.Google Scholar
Thomas, T.L., Hooper, T.I., Camarca, M., Murray, J., Sack, D., Mole, D., Spiro, R.T., Horn, W.G. & Garland, F.C. (2000). A method for monitoring the health of US Navy submarine crewmembers during periods of isolation. Aviat. Space Environ. Med. 71, 699705.Google ScholarPubMed
Torsvik, V. & Ovreas, L. (2002). Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5, 240245.CrossRefGoogle ScholarPubMed
Upsher, J., Fletcher, L.E. & Upsher, C.M. (1994). In Microbiological Conditions on Oberon Submarines. Department of Defence, Defence Science and Technology Organisation, Melbourne, Victoria, Australia.Google Scholar
Venkateswaran, K., Hattori, N., La, Duc M.T. & Kern, R. (2003). ATP as a biomarker of viable microorganisms in clean-room facilities. J. Microbiol. Meth. 52, 367377.CrossRefGoogle ScholarPubMed
Venkateswaran, K., Satomi, M., Chung, S., Kern, R., Koukol, R., Basic, C. & White, D. (2001). Molecular microbial diversity of a spacecraft assembly facility. Syst. Appl. Microbiol. 24, 311320.CrossRefGoogle ScholarPubMed
Venkateswaran, K., La, Duc M.T., Newcombe, D.A., Kempf, M.J., Koke, J.A., Smoot, J.C., Smoot, L.M. & Stahl, D. (2004). Molecular microbial analyses of the Mars Exploration Rovers assembly facility. In Proc. 105th General Meeting of the American Society of Microbiology, Salt Lake City, UT. ASM Press, Washington, DC.Google Scholar
Ward, D.M., Weller, R. & Bateson, M.M. (1990a). 16S rRNA sequences reveal uncultured inhabitants of a well-studied thermal community. FEMS Microbiol. Rev. 6, 105115.CrossRefGoogle ScholarPubMed
Ward, D.M., Weller, R. & Bateson, M.M. (1990b). 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 6365.CrossRefGoogle Scholar
Wise, M.G., McArthur, J.V. & Shimkets, L.J. (1997). Bacterial diversity of a Carolina bay as determined by 16S rRNA gene analysis: confirmation of novel taxa. Appl. Environ. Microbiol. 63, 15051514.CrossRefGoogle Scholar