Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T12:15:03.343Z Has data issue: false hasContentIssue false

Reduction spots in the Mesoproterozoic age: implications for life in the early terrestrial record

Published online by Cambridge University Press:  19 August 2010

Samuel C. Spinks*
Affiliation:
Department of Geology & Petroleum Geology, Meston Building, University of Aberdeen, Kings College, Aberdeen, Scotland AB24 3UE, UK
John Parnell
Affiliation:
Department of Geology & Petroleum Geology, Meston Building, University of Aberdeen, Kings College, Aberdeen, Scotland AB24 3UE, UK
Stephen A. Bowden
Affiliation:
Department of Geology & Petroleum Geology, Meston Building, University of Aberdeen, Kings College, Aberdeen, Scotland AB24 3UE, UK

Abstract

Reduction spots are common within continental red beds in the geological record. The method of formation of reduction spots is a subject of debate, but they are thought to be the result of the reducing nature of microbial life present in the sediment during burial, which caused localized reduction in sediment that was otherwise oxidized during diagenesis. Reduction spots often have dark concretionary cores commonly enriched in elements such as vanadium and uranium. This enrichment is also believed to be associated with the microbial reduction of the sediment. Isotopic data from sulphides present in the cores of analogue Triassic reduction spots are consistent with a potential microbial formation mechanism.

Here we report the presence of reduction spots with vanadium-rich mica (roscoelite) – enriched cores within a terrestrial red bed sequence of the Mesoproterozoic age. These findings may be a possible indicator of life within the terrestrial geological record during the Mesoproterozoic age, a time when such evidence is otherwise very rare. These findings suggest that life had not only colonized terrestrial environments during the Mesoproterozoic age, but had established a deep biosphere in the sediment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amor, K., Hesselbo, S.P., Porcelli, D., Thackrey, S. & Parnell, J. (2008). Geology 36(4), 303306.CrossRefGoogle Scholar
Canfield, D.E., Habicht, K.S. & Thamdrup, B. (2000). Science 288(5466), 658661.CrossRefGoogle Scholar
Canfield, D.E. & Teske, A. (1996). Nature 382, 127132.CrossRefGoogle Scholar
Coleman, M.L. & Moore, M.P. (1978). Anal. Chem. 28, 199260.Google Scholar
Durrence, E.M., Meads, R.E., Ballard, R.R.B. & Walsh, J.N. (1978). Geol. Soc. Am. Bull. 89, 12311240.2.0.CO;2>CrossRefGoogle Scholar
Eichhoff, H.J. & Reineck, H.E. (1952). Neuses Jahrb. Mineral. 11/12, 294314.Google Scholar
Evans, D. (1982). Report – Natural Environment Research Council, Institute of Geological Sciences. The offshore geology of Scotland in relation to the IGS Shallow Drilling Programme, 1970–1978. British Geological Survey, London.Google Scholar
Guo, Q. et al. (2009). Geology 37(5), 399402.CrossRefGoogle Scholar
Harrison, R.K. (1975). Bull. Geol. Surv. GB 52, 126.Google Scholar
Hartmann, M. (1963). Geochim. Cosmochim. Acta 27, 459499.CrossRefGoogle Scholar
Hofmann, B.A. (1990). Chem. Geol. 81(1–2), 5581.CrossRefGoogle Scholar
Hofmann, B.A. (1993). Bitumen Ore Deposits, 9, 362378.CrossRefGoogle Scholar
Johnston, D.T., Farquhar, J. & Canfield, D.E. (2007). Geochim. Cosmochim. Acta 71(16), 39293947.CrossRefGoogle Scholar
Jørgensen, B.B. & Boetius, A. (2007). Nat. Rev. Microbiol. 5(10), 770781.CrossRefGoogle Scholar
Kashefi, K. & Lovley, D.R. (2003). Science 301(5635), 934.CrossRefGoogle Scholar
Keller, W.D. (1929). Am. J. Sci. 5th Ser., 18(103), 6570.CrossRefGoogle Scholar
Kohn, M.J., Riciputi, L.R., Stakes, D. & Orange, D.L. (1998). Am. Mineral. 83(11–12 part 2), 14541468.CrossRefGoogle Scholar
Machel, H.G. (1987). Some aspects of diagenetic sulphate-hydrocarbon redox reactions. In Diagenesis of sedimentary sequences, ed. Marshall, J.D., pp. 1528. Blackwell, Oxford, Geological Society Special Publications, no. 36.CrossRefGoogle Scholar
Machel, H.G. (2001). Sedimentary Geology 140, 143175.CrossRefGoogle Scholar
Manning, P.G. (1975). Can. Mineral. 13, 358360.Google Scholar
Mempel, G. (1960). Geol. Rundsch 49, 263276.CrossRefGoogle Scholar
Miller, W.J. (1910). State Mus. Bull. 140, 150156.Google Scholar
Myakura, H. & Hampton, B.P. (1984). Geol. Mag. 121, 7174.CrossRefGoogle Scholar
Parkes, R.J. & Wellsbury, P. (2004). Deep biospheres. In Microbial Diversity and Bioprospecting, ed. Bull, A.T., pp. 120129. ASM Press, Washington, DC.Google Scholar
Parnell, J. (1985). Neues Jahrbuch fur Mineralogie, Monatshefte 3, 132144.Google Scholar
Parnell, J. (1988). Ir. J. Earth Sci. 9(2), 119124.Google Scholar
Parnell, J. & Eakin, P. (1987). Mineral. Mag. 51(4), 505515.CrossRefGoogle Scholar
Popa, R., Kinkle, B.K. & Badescu, A. (2004). Geomicrobiol. J. 21(3), 193206.CrossRefGoogle Scholar
Prest, V.K., Steacy, H.R. & Bottrill, T.J. (1969). Geol. Surv. Can. Pap. 6874.Google Scholar
Rasmussen, B. (2005). Geology 33(6), 497500.CrossRefGoogle Scholar
Rickard, D.T. (1970). Lithos 3(3), 269293.CrossRefGoogle Scholar
Robinson, B.W. & Kusakabe, M. (1975). Anal. Chem. 47, 11791181.CrossRefGoogle Scholar
Scheiderhöhn, H. (1923). N. Jb. Miner. Geol. Paläont. 47, 138.Google Scholar
Schreiter, R. (1929). Z. Dtsch. Geol. Ges. 81, 293294.Google Scholar
Schrieber, J. (2002). Geology 30(6), 531534.2.0.CO;2>CrossRefGoogle Scholar
Stewart, A.D. (2002). Geol. Soc. Mem. 24.Google Scholar
Taylor, S.R. (1983). Sedimentology 30, 1131.CrossRefGoogle Scholar
Trudinger, P.A., Chambers, L.A. & Smith, J.W. (1985). Can. J. Earth. Sci. 22, 19101918.CrossRefGoogle Scholar
Turner, P. (1980). Continental Red Beds. Developments in Sedimentology 29. Elsevier, Amsterdam.Google Scholar
Van de Poll, H.W. & Sutherland, J.K. (1976). Can. J. Earth. Sci. 13, 781789.CrossRefGoogle Scholar
Van Panhuys-Sigler, M., Trewin, N.H. & Still, J. (1996). Scot. J. Geol. 32(2), 127132.CrossRefGoogle Scholar
Weibel, R. & Friis, H. (2004). Sediment. Geol. 169(3–4), 129149.CrossRefGoogle Scholar
Wilcock, W.S.D. (2004). The Subseafloor Biosphere at Mid-ocean Ridges. American Geophysical Union, Washington, DC.CrossRefGoogle Scholar
Wilkin, R.T. & Barnes, H.L. (1996). Geochim. Cosmochim. Acta 60(21), 41674179.CrossRefGoogle Scholar
Wu, D.C. (1971). Okla. Geol. Notes 31(1), 3–10.Google Scholar