Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T14:02:21.221Z Has data issue: false hasContentIssue false

Role of manganese oxides in peptide synthesis: implication in chemical evolution

Published online by Cambridge University Press:  23 December 2016

Brij Bhushan*
Affiliation:
Department of Agrifood Engineering and Biotecnology, Universitat Politècnica de Catalunya (UPC), Castelldefels, Barcelona 08860, Spain
Arunima Nayak
Affiliation:
IRIS Research-Engineering-Technology, Castelldefels, Barcelona 08860, Spain
Kamaluddin
Affiliation:
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667 (Uttrakhand), India

Abstract

During the course of chemical evolution the role of metal oxides may have been very significant in catalysing the polymerization of biomonomers. The peptide bond formation of alanine (ala) and glycine (gly) in the presence of various oxides of manganese were performed for a period of 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The reaction was monitored every week. The products formed were characterized by high-performance liquid chromatography and electrospray ionization–mass spectrometry techniques. Trace amount of oligomers was observed at 50°C. Maximum yield of peptides was found after 35 days at 90°C. It is important to note that very high temperatures of 120°C favoured the formation of diketopiperazine derivatives. Different types of manganese oxides [manganosite (MnO), bixbyite (Mn2O3), hausmannite (Mn3O4) and pyrolusite (MnO2)] were used as catalyst. The MnO catalysed glycine to cyclic (Gly)2, (Gly)2 and (Gly)3, and alanine, to cyclic (Ala)2 and (Ala)2. Mn3O4 also produced the same products but in lesser yield, while Mn2O3 and MnO2 produced cyclic anhydride of glycine and alanine with a trace amount of dimers and trimmers. Manganese of lower oxidation state is much more efficient in propagating the reaction than higher oxidation states. The possible mechanism of these reactions and the relevance of the results for the prebiotic chemistry are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amend, J.P. & Shock, E.L. (2000). Thermodynamics of amino acid synthesis in hydrothermal systems on the early Earth. Oxford University Press, pp. 2340.Google Scholar
Arora, A.K. & Kamaluddin, (2007). Colloids Surf. A: Physicochem. Eng. Aspects 298, 186191.Google Scholar
Arora, A.K. & Kamaluddin, (2009). Astrobiology 9, 165171.Google Scholar
Arora, A.K., Tomar, V., Aarti, N., Venkateswararao, K.T. & Kamaluddin, (2007). Int. J. Astrobiol. 6, 267271.CrossRefGoogle Scholar
Basiuk, V.A. & Sainz-Rojas, J. (2001). Adv. Space Res. 27, 225230.Google Scholar
Basiuk, V.A., Gromovoy, T.Yu., Golovaty, V.G. & Glukhoy, A.M. (1991). Orig. Life Evol. Biosph. 20, 483498.Google Scholar
Bhushan, B., Shanker, U. & Kamaluddin, (2011). Orig. Life. Evol. Biosph. 41, 469482.CrossRefGoogle Scholar
Bhushan, B., Nayak, A. & Kamaluddin, (2016a). Orig. Life Evol. Biosph. 46, 203213.Google Scholar
Bhushan, B., Nayak, A. & Kamaluddin, (2016b). Int. J. Astrobiol. 113. doi: 10.1017/S1473550416000203.Google Scholar
Brack, A. & Barbier, B. (1990). Orig. Life Evol. Biosph. 20, 139144.CrossRefGoogle Scholar
Bujdak, J. & Rode, B.M. (1996). J. Mol. Evol. 43, 326333.Google Scholar
Bujdak, J. & Rode, B.M. (1997a). J. Mol. Evol. 45, 457466.Google Scholar
Bujdak, J. & Rode, B.M. (1997b). React. Kineto Catal. Lett. 62, 281286.Google Scholar
Bujdak, J. & Rode, B.M. (1999a). J. Mol. Catal. A 144, 129136.Google Scholar
Bujdak, J. & Rode, B.M. (1999b). Orig. Life Evol. Biosph. 29, 451461.CrossRefGoogle Scholar
Bujdak, J. & Rode, B.M. (2001). Amino Acids 21, 281291.Google Scholar
Bujdak, J. & Rode, B.M. (2002). J. Inorg. Chem. 90, 17.Google Scholar
Chen, J., Lin, J.C., Purohit, V., Cutlip, M.B. & Suib, S.L. (1997). Catal. Today 33, 205214.Google Scholar
Chen, X., Shen, Y.F., Suib, S.L. & O'Young, C.L. (2001). J. Catal. 197, 292302.CrossRefGoogle Scholar
Chyba, C. & Sagan, C. (1992). Nature 355, 125132.Google Scholar
Cleaves, H.J., Aubrey, A.D. & Bada, J.L. (2009). Orig. Life Evol. Biosph. 39, 109126.Google Scholar
Coyne, L.M. (1985). Orig. Life Evol. Biosph. 15, 161206.Google Scholar
Espinal, L., Suib, S.L. & Rusling, J.F. (2004). J. Am. Chem. Soc. 126, 76767682.Google Scholar
Flegmann, A.W. & Scholefield, D. (1978). J. Mol. Evol. 12, 101112.Google Scholar
Fuchida, S., Masuda, H. & Shinoda, K. (2014). Orig. Life Evol. Biosph. 44, 1328.CrossRefGoogle Scholar
Getz, W.M. (1990). Bio Systems 24, 177182.Google Scholar
Graf, G. & Laganly, G. (1980). Clays Clay Miner. 28, 1218.Google Scholar
Greenland, D.J., Laby, R.H. & Quirk, J.P. (1962). Trans. Faraday Soc. 58, 829841.Google Scholar
Greenland, D.J., Laby, R.H. & Quirk, J.P. (1965a). Trans. Faraday Soc. 61, 20132023.CrossRefGoogle Scholar
Greenland, D.J., Laby, R.H. & Quirk, J.P. (1965b). Trans. Faraday Soc. 61, 20242035.Google Scholar
Hazen, R.M., Papineau, D., Bleeker, W., Downs Robert, T., Ferry John, M., McCoy Timothy, J., Sverjrjensky Dimitri, A. & Yang, H. (2008). Mineral evolution. Am. Miner. 93, 16931720.Google Scholar
Heiserman, D.L. (1992). Exploring Chemical Elements and their Compounds. Blue Ridge Summit, PA Libraries, Australia.Google Scholar
Huber, C. & Wächtershäuser, G. (1998). Science 281, 670.Google Scholar
Huber, C., Eisenreich, W., Hecht, S. & Wächtershäuser, G. (2003). Science 301, 938940.Google Scholar
Imai, E., Honda, H., Hatori, K., Brack, A. & Matsuno, K. (1999). Science 283, 831833.Google Scholar
Kijlstra, W.S., Brands, D.S., Smit, H.I., Poels, E.K. & Bliek, A. (1997). J. Catal. 171, 219230.Google Scholar
Kunin, V. (2000). Orig. Life Evol. Biosph. 30, 459466.Google Scholar
Lahav, N. (1994). Heterog. Chem. Rev. 1, 159179.Google Scholar
Lahav, N., White, D. & Chang, S. (1978). Science 201, 6769.Google Scholar
Lemke, K., Rosenbauer, R.J. & Bird, D.K. (2009). Astrobiology 9, 141145.Google Scholar
Marshall-Bowman, K., Ohara, S., Sverjensky, D.A., Hazen, R.M. & Cleaves, H.J. (2010). Geochem. Cosmochim. Acta 74, 58525861.CrossRefGoogle Scholar
Matrajit, G. & Blanot, D. (2004). Amino Acids 26, 153161.Google Scholar
Miller, S.L. (1953). Science 117, 528529.Google Scholar
Miller, S.L. (1955). J. Am. Chem. Soc. 77, 23512361.Google Scholar
Nealson, K.H., Tebo, B.M. & Rosson, R.A. (1988). Adv. Appl. Microbiol. 33, 279318.Google Scholar
Oparin, A.I. (1938). The Origin of Life. Macmillan, New York.Google Scholar
Porter, T.L., Eastman, M.P., Hagerman, M.E., Price, L.B. & Shand, R.F. (1998). J. Mol. Evol. 47, 373380.Google Scholar
Qi, G. & Yang, R.T. (2003). Appl. Catal. B: Environ. 44, 217225.Google Scholar
Radhakrishnan, R. & Oyama, S.T. (2001). J. Catal. 2, 282290.Google Scholar
Rimola, A., Tosoni, S., Sodupe, M. & Ugliengo, P. (2006). Chem. Phys. Chem. 7, 157163.Google Scholar
Rimola, A., Sodupe, M. & Ugliengo, P. (2007). J. Am. Chem. Soc. 129, 83338344.Google Scholar
Rode, B.M. (1999). Peptides 20, 773786.Google Scholar
Rode, B.M., Son, H.L., Suwannachot, Y. & Bujdak, J. (1999). Orig. Life Evol. Biosph. 29, 273286.Google Scholar
Schreiner, E., Nair, N.N., Wittekindt, C. & Marx, D. (2011). J. Am. Chem. Soc. 133, 82168226.CrossRefGoogle Scholar
Shanker, U., Bhushan, B., Bhattacharjee, G. & Kamaluddin, (2011). Astrobiology 11, 225.Google Scholar
Shanker, U., Bhushan, B., Bhattacharjee, G. & Kamaluddin, (2013). Orig. Life Evol. Biosph. 42, 3145.Google Scholar
Shock, E.L. (1992). Geochim. Cosmochim. Acta 56, 34813491.CrossRefGoogle Scholar
Smith, J.V. (1998). Proc. Natl. Acad. Sci. USA 95, 33703375.Google Scholar
Tebo, B.M., Ghiorse, W.C., Van Waasbergen, L.G., Siering, P.L. & Caspi, R. (1997). Rev. Miner. 35, 225266.Google Scholar
Tebo, B.M., Bargar, J.R. & Clement, B. (2004). Annu. Rev. Earth Planet. Sci. 32, 287328.Google Scholar
Turekian, K.K. & Wedepohl, K.L. (1961). Geol. Soc. Am. Bull. 72, 175191.Google Scholar
Urey, H. (1952). Proc. Natl. Acad. Sci. USA 38, 351363.CrossRefGoogle Scholar
Vileno, E., Zhou, H., Zhang, Q., Suib, S.L., Corbin, D.R. & Koch, T.A. (1999). J. Catal. 187, 285297.Google Scholar
Voigt, C.A., Kauffman, S. & Wang, Z.G. (2000). Adv. Protein Chem. 55, 79160.Google Scholar
Xia, G.G., Yin, Y.G., Willis, W.S., Wang, J.Y. & Suib, S.L. (1999). J. Catal. 185, 91105.Google Scholar
Zamaraev, K.I., Romannikov, V.N., Salganik, R.I., Wlasoff, W.A. & Khramtsov, V.V. (1997). Orig. Life Evol. Biosph. 27, 325.Google Scholar
Zhou, H., Shen, Y.F., Wang, J.Y., Chen, X., O'Young, C.L. & Suib, S.L. (1998). J. Catal. 176, 321328.Google Scholar