Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T03:35:07.619Z Has data issue: false hasContentIssue false

Stellar statistics along the ecliptic and the impact on the K2 mission concept

Published online by Cambridge University Press:  28 August 2014

Andrej Prša*
Affiliation:
Department of Astrophysics and Planetary Science, Villanova University, 800 E Lancaster Ave, Villanova, PA 19085, USA Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK
Annie Robin
Affiliation:
Institute Utinam, CNRS UMR6213, Université de Franche-Comté, OSU THETA de Franche-Comté-Bourgogne, Besançon, France
Thomas Barclay
Affiliation:
NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035, USA Bay Area Environmental Research Institute, 596 1st Street West, Sonoma CA 95476, USA

Abstract

K2 is the mission concept for a repurposed Kepler mission that uses two reaction wheels to maintain the satellite attitude and provide ~81 days of coverage for ten 105 deg2 fields along the ecliptic in the first 2.5 years of operation. We examine stellar populations based on the updated Besançon model of the Galaxy, comment on the general properties for the entire ecliptic plane, and provide stellar occurrence rates in the first six tentative K2 campaigns grouped by spectral type and luminosity class. For each campaign we distinguish between main the sequence stars and giants, and provide their density profile as a function of galactic latitude. We introduce the crowding metric that serves for optimized target selection across the campaigns. For all main sequence stars we compute the expected planetary occurrence rates for three planet sizes: 2–4, 4–8 and 8–32 R with orbital periods up to 50 days. In conjunction with Gaia and the upcoming Transiting Exoplanet Survey Satellite and Plato missions, K2 will become a gold mine for stellar and planetary astrophysics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arenou, F. (2011). In American Institute of Physics Conference Series, Vol. 1346, ed. Docobo, J.A., Tamazian, V.S. & Balega, Y.Y., pp. 107121.Google Scholar
Baglin, A. (2003). Adv. Space Res. 31, 345.Google Scholar
Batalha, N.M., Rowe, J.F., Bryson, S.T. et al. (2013). Astrophys. J. Suppl. 204, 24.Google Scholar
Borucki, W.J., Koch, D., Basri, G. et al. (2010). Science 327, 977.Google Scholar
Burke, C.J., Bryson, S.T., Mullally, F. et al. (2014). Astrophys. J. Suppl. 210, 19.Google Scholar
Cardelli, J.A., Clayton, G.C. & Mathis, J.S. (1989). Astrophys. J. 345, 245.Google Scholar
Catala, C. (2009). Exp. Astron. 23, 329.Google Scholar
Chaplin, W.J., Kjeldsen, H., Christensen-Dalsgaard, J. et al. (2011). Science 332, 213.Google Scholar
Czekaj, M.A., Robin, A.C., Figueras, F., Luri, X. & Haywood, M. (2014). A&A 564, A102.Google Scholar
de Bruijne, J.H.J. (2012). Astrophys. Space Sci. 341, 31.Google Scholar
Dong, S. & Zhu, Z. (2013). Astrophys. J. 778, 53.Google Scholar
Fressin, F., Torres, G., Charbonneau, D. et al. (2013). Astrophys. J. 766, 81.Google Scholar
Gaulme, P., McKeever, J., Rawls, M.L. et al. (2013). Astrophys. J. 767, 82.Google Scholar
Girardi, L., Groenewegen, M.A.T., Hatziminaoglou, E. & da Costa, L. (2005). Astron. Astrophys. 436, 895.Google Scholar
Hogg, D.W., Myers, A.D. & Bovy, J. (2010). Astrophys. J. 725, 2166.Google Scholar
Howard, A.W., Marcy, G.W., Johnson, J.A. et al. (2010). Science 330, 653.Google Scholar
Howard, A.W., Marcy, G.W., Bryson, S.T. et al. (2012). Astrophys. J. Suppl. 201, 15.Google Scholar
Howell, S.B., Sobeck, C., Haas, M. et al. (2014). arXiv:1402.5163.Google Scholar
Huber, D., Chaplin, W.J., Christensen-Dalsgaard, J. et al. (2013). Astrophys. J. 767, 127.Google Scholar
Marshall, D.J., Robin, A.C., Reylé, C., Schultheis, M. & Picaud, S. (2006). Astron. Astrophys. 453, 635.Google Scholar
Miglio, A., Montalbán, J., Baudin, F. et al. (2009). Astron. Astrophys. 503, L21.Google Scholar
Morton, T.D. & Johnson, J.A. (2011). Astrophys. J. 738, 170.Google Scholar
Ng, Y.K., Bertelli, G., Chiosi, C. & Bressan, A. (1997). Astron. Astrophys. 324, 65.Google Scholar
Papics, P.I. (2013). PhD Thesis, Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.Google Scholar
Prša, A., Batalha, N., Slawson, R.W. et al. (2011). Astron. J. 141, 83.Google Scholar
Raghavan, D., McAlister, H.A., Henry, T.J. et al. (2010). Astrophys. J. Suppl. 190, 1.Google Scholar
Reylé, C., Marshall, D.J., Robin, A.C. & Schultheis, M. (2009). Astron. Astrophys. 495, 819.Google Scholar
Ricker, G.R., Latham, D.W., Vanderspek, R.K. et al. (2010). In Bulletin of the American Astronomical Society, vol. 42, American Astronomical Society Meeting Abstracts #215, #450.06.Google Scholar
Robin, A.C., Reylé, C., Derrière, S. & Picaud, S. (2003). Astron. Astrophys. 409, 523.Google Scholar
Robin, A.C., Reylé, C., Fliri, J., Czekaj, M., Robert, C.P. & Martins, A.M.M. (2014). arXiv. 1406, 5384 (has not appeared in print yet).Google Scholar
Robin, A.C., Marshall, D.J., Schultheis, M. & Reylé, C. (2012). Astron. Astrophys. 538, A106.Google Scholar
Rowe, J.F., Bryson, S.T., Marcy, G.W. et al. (2014). Astrophys. J. 784, 45.Google Scholar
Sharma, S., Bland-Hawthorn, J., Johnston, K.V. & Binney, J. (2011). Astrophys. J. 730, 3.Google Scholar
Slawson, R.W., Prša, A., Welsh, W.F. et al. (2011). Astron. J. 142, 160.Google Scholar
Torres, G., Fressin, F., Batalha, N.M. et al. (2011). Astrophys. J. 727, 24.Google Scholar
Vallenari, A., Bertelli, G., Bressan, A. & Chiosi, C. (1999). Balt. Astron. 8, 147.Google Scholar
Westera, P., Lejeune, T. & Buser, R. (1999). In Astronomical Society of the Pacific Conference Series, vol. 192, ed. Hubeny, I., Heap, S., & Cornett, R., Spectrophotometric Dating of Stars and Galaxies, p. 203.Google Scholar