Article contents
Thermal decomposition rate of MgCO3 as an inorganic astrobiological matrix in meteorites
Published online by Cambridge University Press: 13 April 2016
Abstract
Carbonate minerals, likely of hydrothermal origins and included into orthopyroxenite, have been extensively studied in the ALH84001 meteorite. In this meteorite, nanocrystals comparable with those produced by magnetotactic bacteria have been found into a carbonate matrix. This leads naturally to a discussion of the role of such carbonates in panspermia theories. In this context, the present work sets the basis of a criterion to evaluate whether a carbonate matrix in a meteor entering a planetary atmosphere would be able to reach the surface. As a preliminary step, the composition of carbonate minerals in the ALH84001 meteorite is reviewed; in view of the predominance of Mg in these carbonates, pure magnesite (MgCO3) is proposed as a mineral model. This mineral is much more sensitive to high temperatures reached during an entry process, compared with silicates, due to facile decomposition into MgO and gaseous carbon dioxide (CO2). A most important quantity for further studies is therefore the decomposition rate expressed as CO2 evaporation rate J (molecules/m2 s). An analytical expression for J(T) is given using the Langmuir law, based on CO2 pressure in equilibrium with MgCO3 and MgO at the surface temperature T. Results suggest that carbonate minerals rich in magnesium may offer much better thermal protection to embedded biological matter than silicates and significantly better than limestone, which was considered in previous studies, in view of the heat absorbed by their decomposition even at moderate temperatures. This first study can be extended in the future to account for more complex compositions, including Fe and Ca.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2016
References
- 11
- Cited by