Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T19:14:14.416Z Has data issue: false hasContentIssue false

Thermal degradation of organic material by portable laser Raman spectrometry

Published online by Cambridge University Press:  28 February 2012

Sanjoy M. Som*
Affiliation:
Department of Earth and Space Sciences and Astrobiology Program, University of Washington,Seattle, WA 98195, USA e-mail: sanjoy.m.som@nasa.gov Blue Marble Space Institute of Science, Seattle, WA 98145, USA
Bernard H. Foing
Affiliation:
ESA-ESTEC, Postbus 299, 2200 AG, Noordwijk, The Netherlands & ILEWG Faculty of Earth and Life Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands

Abstract

Raman spectrometry has been established as an instrument of choice for studying the structure and bond type of known molecules, and identifying the composition of unknown substances, whether geological or biological. This versatility has led to its strong consideration for planetary exploration. In the context of the ExoGeoLab and ExoHab pilot projects of ESA-ESTEC & ILEWG (International Lunar Exploration Working Group), we investigated samples of astrobiological interest using a portable Raman spectrometer lasing at 785 nm and discuss implications for planetary exploration. We find that biological samples are typically best observed at wavenumbers >1100 cm−1, but their Raman signals are often affected by fluorescence effects, which lowers their signal-to-noise ratio. Raman signals of minerals are typically found at wavenumbers <1100 cm−1, and tend to be less affected by fluorescence. While higher power and/or longer signal integration time improve Raman signals, such power settings are detrimental to biological samples due to sample thermal degradation. Care must be taken in selecting the laser wavelength, power level and integration time for unknown samples, particularly if Raman signatures of biological components are anticipated. We include in the Appendices tables of Raman signatures for astrobiologically relevant organic compounds and minerals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bishop, J. & Murad, E. (2004). Characterization of minerals and biogeochemical markers on Mars: A Raman IR spectroscopic study of montmorillonite. J. Raman Spectrosc. 35, 480486.CrossRefGoogle Scholar
Buijtels, P., Willemse-Erix, H., Petit, P., Endtz, H., Puppels, G., Verbrugh, H., van Belkum, A., van Soolingen, D. & Maquelin, K. (2008). Rapid identification of mycobacteria by Raman spectroscopy. J. Clin. Microbiol. 43(6), 961965.CrossRefGoogle Scholar
Cai, Z., Zeng, H., Chen, M. & Larkum, A. (2002). Raman spectroscopy of chlorophyll d from Acaryochloris marina. Biochim. Biophys. Acta 1556, 8991.CrossRefGoogle ScholarPubMed
Ceccarelli, M., Lutz, M. & Marchi, M. (2000). A density functional normal mode calculation of a bacteriochlorophyll a derivative. J. Am. Chem. Soc. 122, 35323533.CrossRefGoogle Scholar
De Veij, M., Vandenabeele, P., De Beer, T., Remon, J. & Moens, L. (2009). Reference database of Raman spectra of pharmaceutical excipients. J. Raman Spectrosc. 40, 297307.CrossRefGoogle Scholar
Dickensheets, D., Wynn-Williams, D., Edwards, H., Schoen, C., Crowder, C. & Newton, E. (2000). A novel miniature confocal microscope/Raman spectrometer system for biomolecular analysis on future Mars missions after Antarctica trials. J. Raman Spectrosc. 31, 633635.3.0.CO;2-R>CrossRefGoogle Scholar
Edwards, H.G.et al. (2007). Morphological biosignatures from relict fossilised sedimentary geological specimens: a Raman spectroscopic study. J. Raman Spectrosc. 38, 13521361.CrossRefGoogle Scholar
Edwards, H., Jorge Villar, S., Bishop, J. & Bloomfield, M. (2004). Raman spectroscopy of sediments from the Antarctic Dry Valleys, an analogue study for exploration of potential paleolakes on Mars. J. Raman Spectrosc. 35, 458462.CrossRefGoogle Scholar
Edwards, H., Moody, C., Jorge Villar, S. & Wynn-Williams, D. (2005). Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: Evaluation for Mars Lander missions. Icarus 174, 560571.CrossRefGoogle Scholar
Efrima, S. & Zeiri, L. (2009, online 2008). Understanding SERS of bacteria. J. Raman Spectrosc. 40, 277288.CrossRefGoogle Scholar
Ehrenfreund, P., Röling, W.F.M., Thiel, C.S., Quinn, R., Sephton, M. A., Stoker, C., Kotler, J.M., Direito, S.O.L., Martins, Z., Orzechowska, G.E. et al. (2011). Astrobiology and habitability studies in preparation for future Mars missions: Trends from investigating minerals, organics and biota. Int. J. Astrobiol. 10, 239253.CrossRefGoogle Scholar
Ellery, A., Wynn-Williams, D., Parnell, J., Edwards, H. & Dickensheets, D. (2004). The role of Raman spectroscopy as an astrobiological tool in the exploration of Mars. J. Raman Spectrosc. 35, 441457.CrossRefGoogle Scholar
Fisk, M., Storrie-Lombardi, M., Douglas, S., Popa, R., McDonald, G. & Di Meo-Savoie, C. (2003). Evidence of biological activity in Hawaiian subsurface basalts. Geochem. Geophys. Geosyst. 4, 1103.CrossRefGoogle Scholar
Foing, B.H., Stoker, C. & Ehrenfreund, P. (2011a). Astrobiology field research in Moon/Mars analogue environments. Int. J. Astrobiol. 10, 137139.CrossRefGoogle Scholar
Foing, B.H., Stoker, C., Zavaleta, J., Ehrenfreund, P., Thiel, C., Sarrazin, P., Blake, D., Page, J., Pletser, V., Hendrikse, J.et al. (2011b). Field astrobiology research in Moon–Mars analogue environments, instruments and methods. Int. J. Astrobiol. 10, 141160.CrossRefGoogle Scholar
Freeman, J., Wang, A., Kuebler, K., Jolliff, B. & Haskin, L. (2008). Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Can. Mineral. 46, 14771500.CrossRefGoogle Scholar
Gómez, F., Walter, N., Amils, R., Rull, F., Klingelhöfer, A.K., Kviderova, J.Sarrazin, P., Foing, B., Behar, A., Fleischer, I. et al. (2011). Multidisciplinary integrated field campaign to an acidic Martian Earth analogue with astrobiological interest: Rio Tinto. Int. J. Astrobiol. 10, 291305.CrossRefGoogle Scholar
Hanesch, M. (2009). Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 177, 941948.CrossRefGoogle Scholar
Ivleva, N., Wagner, M., Horn, H., Niessner, R. & Haisch, C. (2009). Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Anal. Bioanal. chem. 393, 197206.CrossRefGoogle ScholarPubMed
Jehlička, J. & Culka, A. (2010). Raman spectra of nitrogen-containing organic compounds obtained using a portable instrument at −15°C at 2860 m above sea level. J. Raman Spectrosc. 41, 537542.CrossRefGoogle Scholar
Jehlička, J. & Edwards, H.G. (2008). Raman spectroscopy as a tool for the non-destructive identification of organic minerals in the geological record. Organic Geochemistry 39, 371386.CrossRefGoogle Scholar
Jehlička, J., Vitek, P. & Edwards, H. (2010). Raman spectra of organic acids obtained using a portable instrument at −5°C in a mountain area at 2000 m above sea level. J. Raman Spectrosc. 41, 440444.CrossRefGoogle Scholar
Jehlička, J., Vitek, P., Edwards, H., Hargreaves, M. & Čapoun, T. (2009a). Rapid outdoor non-destructive detection of organic minerals using a portable Raman spectrometer. J. Raman Spectrosc. 40, 16451651.CrossRefGoogle Scholar
Jehlička, J., Vitek, P., Edwards, H., Heagraves, M. & Capoun, T. (2009b). Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops. Spectrochim. Acta A Mol. Biomol. Spectrosc. 73, 410419.CrossRefGoogle ScholarPubMed
Jorge Villar, S. & Edwards, H. (2006). Raman spectroscopy in astrobiology. Anal. Bioanal. Chem. 384, 100113.CrossRefGoogle ScholarPubMed
Jorge Villar, S., Edwards, H. & Seaward, M. (2005). Raman spectroscopy of hot desert, high altitude epilithic lichens. Analyst 130, 730737.CrossRefGoogle Scholar
Jorge Villar, S.E., Edwards, H. & Cockell, C. (2004). Raman spectroscopy of endoliths from Antarctic cold desert environments. Analyst 130, 156162.CrossRefGoogle Scholar
Kotler, J.M., Quinn, R.C., Foing, B.H., Martins, Z. & Ehrenfreund, P. (2011). Analysis of mineral matrices of planetary soil analogues from the Utah Desert. Int. J. Astrobiol. 10, 221229.CrossRefGoogle Scholar
Lutz, M. (1974). Resonance Raman spectra of chlorophyll in solution. J. Raman Spectrosc. 2, 497516.CrossRefGoogle Scholar
Martins, Z., Sephton, M.A., Foing, B.H. & Ehrenfreund, P. (2011). Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. Int. J. Astrobiol. 10, 231238.CrossRefGoogle Scholar
Muniz-Miranda, M., Gellini, C. & Bindi, L. (2009). Surface-enhanced Raman spectroscopy for identifying rock composition. Spectrochim. Acta A Mol. Biomol. Spectrosc. 73, 456459.CrossRefGoogle ScholarPubMed
Pasteris, J.D. & Wopenka, B. (2003). Necessary but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3, 727738.CrossRefGoogle Scholar
Petry, R., Schmitt, M. & Popp, J. (2003). Raman spectroscopy – a prospective tool in the life sciences. ChemPhysChem 4, 1430.CrossRefGoogle ScholarPubMed
Stoker, C.R., Clarke, J., Direito, S.O.L., Blake, D., Martin, K.R., Zavaleta, J. & Foing, B. (2011). Mineralogical, chemical, organic and microbial properties of subsurface soil cores from Mars Desert Research Station (Utah, USA): Phyllosilicate and sulfate analogues to Mars mission landing sites. Int. J. Astrobiol. 10, 269289.CrossRefGoogle Scholar
Tarcea, N., Frosch, T., Rösch, P., Hilchenbach, M., Stuffler, T., Hofer, S., Thiele, H., Hochleitner, R. & Popp, J. (2008). Raman spectroscopy – a powerful tool for in situ planetary science. Strateg. Life Detect. 281292.CrossRefGoogle Scholar
Thiel, C.S., Ehrenfreund, P., Foing, B., Pletser, V. & Ullrich, O. (2011a). PCR-based analysis of microbial communities during the EuroGeoMars campaign at Mars Desert Research Station, Utah. Int. J. Astrobiol. 10, 177190.CrossRefGoogle Scholar
Thiel, C.S., Pletser, V. & Foing, B.H. (2011b). Human crew-related aspects for astrobiology research. Int. J. Astrobiol. 10, 255267.CrossRefGoogle Scholar
Vitek, P., Jehlicka, J., Edwards, H. & Osterrothova, K. (2009). Identification of β-carotene in an evaporitic matrix – evaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal. Bioanal. Chem. 393, 19671975.CrossRefGoogle Scholar
Wang, A., Haskin, L. & Cortez, E. (1998). Prototype Raman spectroscopic sensor for in situ mineral characterization on planetary surfaces. Appl. spectrosc. 52, 477487.CrossRefGoogle Scholar
Williams, T., Martin, R.B. & Collette, T. (2001). Raman Spectroscopic Analysis of Fertilizers and Plant Tissue for Perchlorate. Applied Spectroscopy. 55(8), 967983.CrossRefGoogle Scholar