Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T13:02:56.909Z Has data issue: false hasContentIssue false

Trends in the evolution of life, brains and intelligence

Published online by Cambridge University Press:  26 March 2013

Jean-Pierre Rospars*
Affiliation:
INRA, UMR 1272 Physiologie de l'Insecte : Signalisation et Communication, F-78000 Versailles, France e-mail: Jean-Pierre.Rospars@versailles.inra.fr

Abstract

The fI term of Drake's equation – the fraction of life-bearing planets on which ‘intelligent’ life evolved – has been the subject of much debate in the last few decades. Several leading evolutionary biologists have endorsed the thesis that the probability of intelligent life elsewhere in the universe is vanishingly small. A discussion of this thesis is proposed here that focuses on a key issue in the debate: the existence of evolutionary trends, often presented as trends towards higher complexity, and their possible significance. The present state of knowledge on trends is reviewed. Measurements of quantitative variables that describe important features of the evolution of living organisms – their hierarchical organization, size and biodiversity – and of brains – their overall size, the number and size of their components – in relation to their cognitive abilities, provide reliable evidence of the reality and generality of evolutionary trends. Properties of trends are inferred and frequent misinterpretations (including an excessive stress on mere ‘complexity’) that prevent the objective assessment of trends are considered. Finally, several arguments against the repeatability of evolution to intelligence are discussed. It is concluded that no compelling argument exists for an exceedingly small probability fI. More research is needed before this wide-ranging negative conclusion is accepted.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello, L.C. & Wheeler, P. (1995). The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199221.Google Scholar
Aiello, L.C., Bates, N. & Joffe, T. (2001). In defense of the expensive tissue hypothesis. In Evolutionary Anatomy of the Primate Cerebral Cortex, ed. Falk, D. & Gibson, K.R., pp. 5778. Cambridge University Press, Cambridge, UK.Google Scholar
Alroy, J. et al. (2001). Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc. Natl. Acad. Sci. U.S.A. 98(11), 62616266.Google Scholar
Alroy, J. et al. (2008). Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97100.Google Scholar
Avarguès-Weber, A., Dyer, A.G., Combe, M. & Giurfa, M. (2012). Simultaneous mastering of two abstract concepts by the miniature brain of bees. Proc. Natl. Acad. Sci. U.S.A. 109(19), 74817486.Google Scholar
Ayala, F.J. (1974). The concept of biological progress. In Studies in the Philosophy of Biology, ed. Ayala, F.J. & Dobzhansky, T., pp. 357376. University of California Press, Berkeley and Los Angeles.CrossRefGoogle Scholar
Ayala, F.J. (1988). Can ‘progress’ be defined as a biological concept? In Evolutionary Progress, ed. Nitecki, M.H., pp. 7596. The University of Chicago Press, Chicago, IL.Google Scholar
Azevedo, F.A., Carvalho, L.R., Grinberg, L.T., Farfel, J.M., Ferretti, R.E.L., Leite, R.E.P., Filho, J.W., Lent, R., Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532541.CrossRefGoogle Scholar
Baron, G., Frahm, H.D. & Stephan, H. (1988). Comparison of brain structure volumes in insectivora and primates. VIII. Vestibular complex. J. für Hirnforschung 29, 509523.Google Scholar
Bates, L.A. & Byrne, R.W. (2007). Creative or created: using anecdotes to investigate animal cognition. Methods 42, 1221.Google Scholar
Bauchot, R. & Platel, R. (1972). L'encéphalisation. La Recherche 4, 10691077.Google Scholar
Bell, G. & Mooers, A.O. (1997). Size and complexity among multicellular organisms. Biol. J. Linn. Soc. 60, 345363.Google Scholar
Benton, M.J. (1985). Mass extinction among non-marine tetrapods. Nature 316, 811814.CrossRefGoogle Scholar
Benton, M.J. (2009). The Red Queen and the court jester: species diversity and the role of biotic and abiotic factors through time. Science 323, 728732.CrossRefGoogle ScholarPubMed
Benton, M.J. (2010). The origins of modern biodiversity on land. Phil. Trans. R. Soc. B 365, 36673679.Google Scholar
Benton, M.J. & Emerson, B.C. (2007). How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50, 2340.CrossRefGoogle Scholar
Bogonovich, M. (2011). Intelligence's likelihood and evolutionary time frame. Int. J. Astrobiol. 10(2), 113122.Google Scholar
Bonner, J.T. (1965). Size and Cycle. Princeton University Press, Princeton.Google Scholar
Bonner, J.T. (1998). The origins of multicellularity. Integr. Biol. 1, 2736.Google Scholar
Bonner, J.T. (2004). The size-complexity rule. Evolution 58, 18831890.Google ScholarPubMed
Bonner, J.T. (2006). Why Size Matters. From Bacteria to Blue Whales. Princeton University Press, Princeton and Oxford.Google Scholar
Cailleux, A. (1971). Le temps et les échelons de l'évolution. In Time in Science and Philosophy, ed. Zeman, J., pp. 135145. Elsevier, Amsterdam and Academia, Prague.Google Scholar
Campbell, C.B. & Hodos, W. (1991). The Scala Naturae revisited: evolutionary scales and anagenesis in comparative psychology. J. Comp. Psychol. 105(3), 211221.Google Scholar
Carroll, S. (2001). Chance and necessity: the evolution of morphological complexity and diversity. Nature 409, 11021109.Google Scholar
Chaline, J. & Marchand, D. (2002). Les merveilles de l'évolution. Editions Universitaires de Dijon, Dijon.Google Scholar
Chaline, J., Nottale, L. & Grou, P. (1999). Is the evolutionary tree a fractal structure? C.R. Acad. Sci. Paris, Sci. Terre Planètes 328, 717726.Google Scholar
Chaline, J., Nottale, L. & Grou, P. (2009). Des fleurs pour Schrödinger. La relativité d'échelle et ses applications. Ellipses, Paris.Google Scholar
Changizi, M.A. (2003). Relationship between number of muscles, behavioral repertoire size, and encephalization in mammals. J. Theor. Biol. 220, 157168.Google Scholar
Chittka, L. & Niven, J. (2009). Are bigger brains better? Curr. Biol. 19, R995R1008.Google Scholar
Clark, D.A., Mitra, P.P. & Wang, S.S.-H. (2001). Scalable architecture in mammalian brains. Nature 411, 189193.Google Scholar
Conway Morris, S. (2003). Life's Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Conway Morris, S. (2010). Evolution: like any other science is predictable. Phil. Trans. Royal Soc. B 365, 133145.Google Scholar
Conway Morris, S. (2011). Predicting what extra-terrestrials will be like: and preparing for the worst. Phil. Trans. Royal Soc. A 369, 555571.Google Scholar
Dambricourt Malassé, A., Deshayes, M.J., Marchand, D., Magniez-Jannin, F. & Chaline, J. (1999). A solution to the human paradox: fundamental ontogenies and heterochronies. Hum. Evol. 14(4), 277300.Google Scholar
de Duve, C. (1995). Vital Dust. Life as a Cosmic Imperative. Basic Books, New York.Google Scholar
de Duve, C. (1998). Réflexions sur l'origine et l'évolution de la vie. C. R. Soc. Biol. 192, 893901.Google Scholar
de Duve, C. (2011). Life as a cosmic imperative. Phil. Trans. R. Soc. A 369, 620623.Google Scholar
de Miguel, C. & Henneberg, M. (2001). Variation in hominid brain size: how much is due to method? Homo 52, 358.Google Scholar
Deaner, R.O., van Schaik, C.P. & Johnson, V.E. (2006). Do some taxa have better domain-general cognition than others? A meta-analysis of nonhuman primate studies. Evol. Psychol. 4, 149196.Google Scholar
Deaner, R.O., Isler, K., Burkart, J. & van Schaik, C. (2007). Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70, 115124.Google Scholar
Donoghue, M.J. (2005). Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31: 7793.CrossRefGoogle Scholar
Eisenberg, J.F. & Wilson, D.E. (1978). Relative brain size and feeding strategies in the Chiroptera. Evolution 32, 740751.CrossRefGoogle ScholarPubMed
Elton, S., Bishop, L.C. & Wood, B. (2001). Comparative context of Plio-Pleistocene hominin brain evolution. J. Hum. Evol. 41, 127.CrossRefGoogle ScholarPubMed
Emery, N.J. & Clayton, N.S. (2004). The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306, 19031907.CrossRefGoogle ScholarPubMed
Erwin, D.H. (2006). Extinction. How Life on Earth Nearly Ended 250 Million Years Ago. Princeton University Press, Princeton and Oxford.Google Scholar
Falk, D., Redmond, J.C. Jr., Guyer, J., Conroy, G.C., Recheis, W., Weber, G.W. & Seidler, H. (2000). Early hominid brain evolution: a new look at old endocasts. J. Hum. Evol. 38, 695717.Google Scholar
Falk, D., Hildebolt, C., Smith, K., Morwood, M.J., Sutikna, T., Brown, P., Jatmiko, , Wayhu Saptomo, E., Brunsden, B. & Prior, F. (2005). The brain of Homo floresiensis. Science 308, 242245.Google Scholar
Falk, D., Hildebolt, C., Smith, K., Morwood, M.J., Sutikna, , Jatmiko, T., Saptomod, E.W. & Prior, F. (2009). LB1's virtual endocast, microcephaly, and hominin brain evolution. J. Hum. Evol. 57, 597607.Google Scholar
Finarelli, J.A. & Flynn, J.J. (2006). Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Syst. Biol. 55, 301313.Google Scholar
Finarelli, J.A. & Flynn, J.J. (2007). The evolution of encephalization in caniform carnivorans. Evolution 61(7), 17581772.Google Scholar
Finlay, B.L. & Darlington, R.B. (1995). Linked regularities in the development and evolution of mammalian brains. Science 268, 15781584.CrossRefGoogle ScholarPubMed
Fisher, J. & Hinde, R.A. (1949). The opening of milk bottles in birds. Br. Birds 42, 347357.Google Scholar
Fish, J.L. & Lockwood, C.A. (2003). Dietary constraints on encephalization in primates. Am. J. Phys. Anthropol. 120, 171181.Google Scholar
Freeland, S.J., Knight, R.D., Landweber, L.F. & Hurst, L.D. (2000). Early fixation of an optimal genetic code. Mol. Biol. Evol. 17, 511518.Google Scholar
Gallup, G.G. (1970). Chimpanzees: self-recognition. Science 167, 8687.Google Scholar
Giurfa, M. (2003). Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr. Opin. Neurobiol. 13, 726735.Google Scholar
Gittleman, J.L. (1986). Carnivore brain size, behavioral ecology, and phylogeny. J. Mamm. 67, 2336.CrossRefGoogle Scholar
Gross, H.J., Pahl, M., Si, A., Zhu, H., Tautz, J. & Zhang, S. (2009). Number-based visual generalisation in the honeybee. PLoS ONE 4(1), e4263.Google Scholar
Gould, J.L. (2004). Animal cognition. Curr. Biol. 14(10), R372R375.CrossRefGoogle ScholarPubMed
Gould, S.J. (1989). Wonderful Life. W.W. Norton & Co., New York.Google Scholar
Gould, S.J. (1996). Full House. Harmony Books, New York.Google Scholar
Gould, S.J. (2001). Size matters and function counts. In Evolutionary Anatomy of the Primate Cerebral Cortex, ed. Falk, D. & Gibson, K.R., pp. xiiixvii. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Gould, S.J., Gilinsky, N.L., German, R.Z. (1987). Asymmetry of lineages and the direction of evolutionary time. Science 236, 14371441.Google Scholar
Hartline, D.K. & Colman, D.R. (2007). Rapid conduction and the evolution of giant axons and myelinated fibers. Curr. Biol. 17, R29R35.Google Scholar
Heinze, S. & Homberg, U. (2007). Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315, 995997.CrossRefGoogle ScholarPubMed
Herculano-Houzel, S. (2007). Encephalization, neuronal excess, and neuronal index in rodents. Anat. Rec. 290, 12801287.Google Scholar
Herculano-Houzel, S. (2010). Coordinated scaling of cortical and cerebellar numbers of neurons. Front. Neuroanat. 4(12), 18.Google ScholarPubMed
Herculano-Houzel, S. (2011). Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size. Ann. N.Y. Acad. Sci. 1225, 191199.CrossRefGoogle Scholar
Herculano-Houzel, S. & Kaas, J.H. (2011). Gorilla and orangutan brains conform to the primate cellular scaling rules: Implications for human evolution. Brain Behav. Evol. 77, 3344.Google Scholar
Herculano-Houzel, S., Collins, C.E., Wong, P. & Kaas, J.H. (2007). Cellular scaling rules for primate brains. Proc. Natl. Acad. Sci. U.S.A. 104, 35623567.CrossRefGoogle ScholarPubMed
Herculano-Houzel, S., Mota, B. & Lent, R. (2006). Cellular scaling rules for rodent brains. Proc. Natl. Acad. Sci. U.S.A. 103(32), 1213812143.Google Scholar
Hodos, W. & Campbell, C.B.G. (1969). Scala naturae: why there is no theory in comparative psychology. Psychol. Rev. 76, 337350.CrossRefGoogle Scholar
Hunt, G.R. (1996). Manufacture and use of hook-tools by new Caledonian crows. Nature 379, 249251.Google Scholar
Huxley, J.S. (1932). Problem of Relative Growth. Methuen, London.Google Scholar
Jerison, H.J. (1973). Evolution of the Brain and Intelligence. Academic Press, New York and London.Google Scholar
Jerison, H.J. (1991). Brain Size and the Evolution of Mind. American Museum of Natural History, New York.Google Scholar
Kaas, J.H. (2008). The evolution of the complex sensory and motor systems of the human brain. Brain Res. Bull., 75, 384390.Google Scholar
Kappelman, J. (1996). The evolution of body mass and relative brain size in fossil hominids. J. Hum. Evol., 30, 243276.Google Scholar
Kerr, R.A. (2008). Life's innovations let it diversify, at least up to a point. Science 321, 2425.Google Scholar
Knoll, A.H. (2003). Life on a Young Planet. Princeton University Press, Princeton and Oxford.Google Scholar
Krubitzer, L. (2009) In search of a unifying theory of complex brain evolution. Ann. N.Y. Acad. Sci. 1156, 4467.CrossRefGoogle ScholarPubMed
Krubitzer, L. & Kaas, J. (2005) The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr. Opin. Neurobiol. 15, 444453.Google Scholar
Labandeira, C.C. & Sepkoski, J.J. Jr. (1993). Insect diversity in the fossil record. Science 261, 310315.Google Scholar
Lefebvre, L., Whittle, P., Lascaris, E. & Finkelstein, A. (1997). Feeding innovations and forebrain size in birds. Anim. Behav. 53, 549560.CrossRefGoogle Scholar
Lent, R., Azevedo, F.A.C., Andrade-Moraes, C.H. & Pinto, A.V.O. (2012). How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur. J. Neurosci. 35, 19.Google Scholar
Leonard, W.R., Robertson, M.L., Snodgrass, J.J. & Kuzawa, C.W. (2003). Metabolic correlates of hominid brain evolution. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 136, 515.Google Scholar
Lineweaver, C.H. (2005). Book review of ‘Intelligent Life in the Universe’ by P. Ulmschneider. Astrobiology 5(5), 658661.Google Scholar
Lineweaver, C.H. (2008). Paleontological tests: human-like intelligence is not a convergent feature of evolution. In From Fossils to Astrobiology, ed. Seckbach, J. & Walsh, M., pp. 353368, Springer, New York.Google Scholar
Lindstedt, S.L. & Calder, W.A. (1981). Body size, physiological time, and longevity of homeothermic animals. Q. Rev. Biol. 56, 116.Google Scholar
Losos, J.B. (2011). Convergence, adaptation, and constraint. Evolution 65(7), 18271840.CrossRefGoogle ScholarPubMed
Losos, J.B., Jackman, T., Larson, A., de Queiroz, K. & Rogriquez-Schettino, L. (1998). Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 21152118.Google Scholar
Mace, G.M., Harvey, P.H. & Clutton-Brock, T.H. (1980). Is brain size an ecological variable? Trends Neurosci. 3(8), 193196.Google Scholar
Marcot, J.D. & McShea, D.W. (2007). Increasing hierarchical complexity throughout the history of life: phylogenetic tests of trend mechanisms. Paleobiology 33, 182200.Google Scholar
Marino, L., Uhen, M.D., Pyenson, N.D. & Frohlich, B. (2003). Reconstructing cetacean brain evolution using computed tomography. Anat. Rec. B: New Anat. 272, 107117.CrossRefGoogle ScholarPubMed
Marino, L., McShea, D.W. & Uhen, M.D. (2004). Origin and evolution of large brains in toothed whales. Anat. Record A, 281A, 12471255.Google Scholar
Martin, R.D. (1996). Scaling of the mammalian brain: the maternal energy hypothesis. News Physiol. Sci. 11, 149156.Google Scholar
May, R.M. (1990). How many species? Phil. Trans. R. Soc. Lond. B 330, 293304.Google Scholar
May, R.M. (1994). Biological diversity: differences between land and sea. Phil. Trans. R. Soc. Lond. B 343, 105–11.Google Scholar
Mayhew, P.J. (2007). Why are there so many insect species? Perspectives from fossils and phylogenies. Biol. Rev. 82, 425454.CrossRefGoogle ScholarPubMed
Maynard Smith, J. & Szathmáry, E. (1995). The Major Transitions in Evolution. Freeman, Oxford.Google Scholar
Mayr, E. (1985). The probability of extraterrestrial intelligent life. In Extraterrestrials. Science and Alien Intelligence, ed. Regis, E., pp. 2330. Cambridge University Press, Cambridge, UK.Google Scholar
Melville, J., Harmon, L.L. & Losos, J.B. (2005). Intercontinental community convergence of ecology and morphology in desert lizards. Proc. Royal Soc. London B, 273: 557563.Google Scholar
McHenry, H.M. (1994). Tempo and mode in human evolution. Proc. Natl. Acad. Sci. U.S.A. 91, 67806786.Google Scholar
McShea, D.W. (1991). Complexity and evolution: what everybody knows. Biol. Philos. 6, 303324.Google Scholar
McShea, D.W. (1996). Metazoan complexity and evolution: is there a trend? Evolution 50, 477492.Google Scholar
McShea, D.W. (2001a). The hierarchical structure of organisms: a scale and documentation of a trend in the maximum. Paleobiology 27, 405423.Google Scholar
McShea, D.W. (2001b). The minor transitions in hierarchical evolution and the question of a directional bias. J. Evol. Biol. 14, 502518.Google Scholar
McShea, D.W. & Brandon, R.N. (2010). Biology's First Law: the Tendency for Diversity and Complexity to Increase in Evolutionary Systems. The University of Chicago Press, Chicago, IL.Google Scholar
McShea, D.W. & Changizi, M.A. (2003). Three puzzles in hierarchical evolution. Integr. Comp. Biol. 43, 7481.Google Scholar
Meyer, F. (1954). Problématique de l'évolution. Presses Universitaires de France, Paris.Google Scholar
Meyer, F. & Vallée, J. (1975). The dynamics of long-term growth. Technol. Forecast. Soc. Change 7, 285300.Google Scholar
Monod, J. (1970). Le hasard et la nécessité:Essai sur la philosophie naturelle de la biologie moderne. Seuil, Paris.Google Scholar
Morand-Ferron, J., Sol, D. & Lefebvre, L. (2007). Food stealing in birds: brain or brawn? Anim. Behav. 74, 17251734.Google Scholar
Neill, D. (2007). Cortical evolution and human behavior. Brain Res. Bull. 74, 191205.CrossRefGoogle Scholar
Niklas, K.J., Tiffney, B.H. & Knoll, A.H. (1985). Patterns in vascular land plant diversification: a factor analysis at the species level. In Phanerozoic Diversity Patterns, ed. Valentine, J.W., pp. 97128. Princeton University Press, Princeton, NJ.Google Scholar
Nishikawa, K.C. (1997). Emergence of novel functions during brain evolution. BioScience 47(6), 341354.Google Scholar
Nishikawa, K.C. (2002). Evolutionary convergence in nervous systems: insights from comparative phylogenetic studies. Brain Behav. Evol. 59, 240249.CrossRefGoogle ScholarPubMed
Northcutt, R.G. (2002). Understanding vertebrate brain evolution. Integr. Comp. Biol. 42, 743756.Google Scholar
Northcutt, R.G. & Kaas, J.H. (1995). The emergence and evolution of mammalian neocortex. Trends Neurosci. 18, 373379.CrossRefGoogle ScholarPubMed
Parent, A. & Hazrati, L.N. (1994). The ladder of progress in neuroscience. Reply C.G. Gross. Trends Neurosci. 17(6), 227228.Google Scholar
Pettersson, M. (1976). Complexity and Evolution. Cambridge University Press, Cambridge, UK.Google Scholar
Plotnik, J., de Waal, F.M.B. & Reiss, D. (2006). Self-recognition in an Asian elephant. Proc. Natl. Acad. Sci. U.S.A. 103, 1705317057.Google Scholar
Prior, H., Schwarz, A. & Güntürkün, O. (2008). Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biol. 6, 16421650.Google Scholar
Rakic, P. (1995). A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383388.Google Scholar
Rapoport, S.I. (1999). How did the human brain evolve? A proposal based on new evidence from in vivo brain imaging during attention and ideation. Brain Res. Bull. 50, 149165.Google Scholar
Raup, D.M. (1976). Species diversity in the Phanerozoic: an interpretation. Paleobiology 2, 289297.Google Scholar
Raup, D.M. (1991). Extinction. Bad Genes or Bad Luck? W.W. Norton, New York.Google ScholarPubMed
Reader, S.M. & Laland, K.N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl. Acad. Sci. U.S.A. 99, 44364441.Google Scholar
Reep, R.L., Finlay, B.L. & Darlington, R.B. (2007). The limbic system in mammalian brain evolution. Brain Behav. Evol. 70, 5770.Google Scholar
Reiner, A., Perkel, D.J., Bruce, L.L., Butler, A.B., Csillag, A., Kuenzel, W., Medina, L., Paxinos, G., Smimizu, T., Striedter, G. (2004). Revised nomenclature for avian telencephalon and some related brainstem nuclei. J. Comp. Neurol. 473, 377414.Google Scholar
Reiss, D. & Marino, L. (2001). Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence. Proc. Natl. Acad. Sci. U.S.A. 98, 59375942.CrossRefGoogle ScholarPubMed
Rilling, J.K. & Insel, T.R. (1998). Evolution of the cerebellum in primates: differences in relative volume among monkeys, apes and humans. Brain Behav. Evol. 52, 308314.Google Scholar
Rospars, J.-P. (2010). Terrestrial biological evolution and its implication for SETI. Acta Astronaut. 67, 13611365.CrossRefGoogle Scholar
Roth, G. & Dicke, U. (2005). Evolution of the brain and intelligence. Trends Cogn. Sci. 9(5), 250257.Google Scholar
Roth, G., Nishikawa, K.C., Naujoks-Manteuffel, C., Schmidt, A. & Wake, D.B. (1993). Paedomorphosis and simplification in the nervous system of salamanders. Brain Behav. Evol. 42, 137170.Google Scholar
Russell, D.A. (1979). Speculations on the evolution of intelligence in multicellular organisms. In Life in the Universe, ed. Billingham, J., pp. 259275. MIT Press, Cambridge, MA.Google Scholar
Russell, D.A. (1983). Exponential evolution: implications for intelligent extraterrestrial life. Adv. Space Res. 3, 95103.Google Scholar
Russell, D.A. (2009). Islands in the Cosmos. The Evolution of Life on Land. Indiana University Press, Bloomington and Indianapolis.Google Scholar
Safi, K., Seid, M.A. & Dechmann, D.K.N. (2005). Bigger is not always better: when brains get smaller. Biol. Lett. 1, 283286.Google Scholar
Sagan, C. (1995). The abundance of life-bearing planets. Bioastron. News 7(4), 14.Google Scholar
Sahney, S., Benton, M.J. & Ferry, P.A. (2010). Links between global taxonomic diversity, ecological diversity, and the expansion of vertebrates on land. Biol. Lett. 6, 544547.Google Scholar
Salvini-Plawen, L.v. & Mayr, E. (1977). On the evolution of photoreceptors and eyes. Evol. Biol. 10, 207263.Google Scholar
Sarko, D.K., Catania, K.C., Leitch, D.B., Kaas, J.H. & Herculano-Houzel, S. (2009). Cellular scaling rules of insectivore brains. Front. Neuroanat. 3, article 8, pp. 112.Google Scholar
Schmidt-Nielsen, K. (1984). Scaling. Why is animal size so important? Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Sepkoski, J.J. Jr. (1984). A kinetic model of phanerozoic taxonomic diversity. III. Post-paleozoic families and mass extinctions. Paleobiology 10, 246267.Google Scholar
Sepkoski, J.J. Jr. (1996). Patterns of Phanerozoic extinction: a perspective from global data bases. In Global events and event stratigraphy, ed. Walliser, O.H., pp. 3551. Springer, Berlin.Google Scholar
Shubin, N., Tabin, C. & Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature 457, 818823.CrossRefGoogle ScholarPubMed
Simpson, G.G. (1964). The nonprevalence of humanoids. Science 143, 769775. (Also published as Chapter 13 in This View of Life: The World of an Evolutionist, Harcourt, Brace & World, New York.)Google Scholar
Simpson, G.G. & Beck, W.S. (1965). Life, 2nd edn. Harcourt, Brace and World, New York.Google Scholar
Sol, D. (2009). Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biol. Lett. 5, 130133.CrossRefGoogle ScholarPubMed
Sol, D., Timmermans, S. & Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. Anim. Behav. 63, 495502.Google Scholar
Sol, D., Duncan, R.P., Blackburn, T.M., Casset, P. & Lefebvre, L. (2005). Big brains, enhanced cognition and response of birds to novel environments. Proc. Natl. Acad. Sci. U.S.A. 102, 54605465.Google Scholar
Stebbins, G.L. (1969). The Basis of Progressive Evolution, University of North Carolina Press, Chapel HillGoogle Scholar
Sternberg, R.J. (2002). The search for criteria: why study the evolution of intelligence. In The Evolution of Intelligence, ed. Sternberg, R.J. & Kaufman, J.C., pp. 17. Lawrence Erlbaum Associates, Publishers, Mahwah, NJ.Google Scholar
Strausfeld, N.J. (1976) Atlas of an insect brain. Springer, Berlin, Heildelberg.Google Scholar
Teissier, G. (1936). Croissance comparée des formes d'une même espèce. Mem. Mus. R. Hist. Nat. Belg. 3, 627634.Google Scholar
Thireau, M. & Doré, J.-C. (2002). Liens phylogénétiques dégagés entre Tenrécinés, Insectivores, Prosimiens, Simiens non humanoïdes, Homme et Chiroptères (Méga- ou Micro-), au moyen d'analyses multivariées du volume des étages encéphaliques et de quelques macro-structures télencéphaliques. Bull. Soc. Zool. France 127(2), 181204.Google Scholar
Thireau, M. & Doré, J.-C. (2003). Evolutionary anatomy of the primate cerebral cortex, 2001 et S.J. Gould: regards croisés. C. R. Palevol 2, 373381.Google Scholar
Valentine, J., Collins, A.G. & Meyer, C.P. (1994). Morphological complexity increase in metazoans. Paleobiology 20, 131142.Google Scholar
van Dongen, P.A.M. (1998). Brain size in vertebrates. In The Central Nervous System of Vertebrates (Vol. 3), ed. Nieuwenhuys, R. et al. , pp. 20992134. Springer, Berlin.Google Scholar
van Lawick-Goodall, J. (1970). Tool-using in primates and other vertebrates. Adv. Study Behav. 3, 195249.Google Scholar
Vermeij, G.J. & Grosberg, R.K. (2010). The Great Divergence: when did diversity on land exceed that in the sea? Integr. Comp. Biol. 50(4), 675682.Google Scholar
Ward, P.D., Brownlee, D. (2000). Rare Earth. Why complex life is uncommon in the universe. Copernicus, NY, 333 pp.CrossRefGoogle Scholar
Williams, G.C. (1966). Adaptation and Natural Selection. Princeton University Press, Princeton.Google Scholar
Wilson, E.O. (1992). The diversity of life, pp. 424. Harvard University Press, Cambridge, MA.Google Scholar
Yopak, K.E., Lisney, T.J., Darlington, R.B., Collin, S.P., Montgomery, J.C. & Finlay, B.L. (2010). A conserved pattern of brain scaling from sharks to primates. Proc. Natl. Acad. Sci. U.S.A. 107(29), 1294512951.Google Scholar
Zhang, K. & Sejnowski, T.J. (2000). A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 97(10), 56215626.CrossRefGoogle ScholarPubMed