Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T02:11:42.343Z Has data issue: false hasContentIssue false

Absolute optical frequency measurements of iodine-stabilizedHe-Ne laser at 633 nm by using a femtosecond laser frequency comb

Published online by Cambridge University Press:  14 November 2012

Get access

Abstract

The optical frequency comb generator (OFCG) is an attractive optical reference source forvarious applications such as optical frequency metrology, precision spectroscopy andtelecommunications [D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, S.T.Cundiff, Science 288, 635–639 (2000); T. Udem, R. Holzwarth, T.W. Hänsch,Nature 416, 233–237 (2002); T.W. Hänsch, J. Alnis, P. Fendel, M. Fischer, C.Gohle, M. Herrmann, R. Holzwarth, N. Kolachevsky, Th. Udem, M. Zimmermann, Philos. Trans.R. Soc. A 363, 2155–2163 (2005)]. In particular, the OFCG can be used assource for absolute frequency measurement, providing a precise ruler for length metrology.In the present work we describe the results of absolute frequency measurements of primarywavelength standards at 633 nm on the sixth components, d, e, f, g, h and i of the R(127)11-5 hyperfine transition of the 127I2 molecule, at the SpanishCentre of Metrology, CEM. The values obtained with a femtosecond frequency comb (FC1500,Menlo Systems) at CEM are compared with the values recommended by the ConsultativeCommittee for Length (CCL) [T.J. Quinn, Metrologia 40, 103–133 (2003)]. Thisdetermination was made by beat frequency method between a femtosecond laser comb and aniodine-stabilized He-Ne laser. The difference between the mean frequency of the sixthcomponents of the standard laser and those of CCL recommended values for the samecomponents was found to be 6.557 kHz.

Type
Research Article
Copyright
© EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jones, D.J., Diddams, S.A., Ranka, J.K., Stentz, A., Windeler, R.S., Cundiff, S.T., Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science 288, 635639 (2000) CrossRefGoogle ScholarPubMed
Udem, T., Holzwarth, R., Hänsch, T.W., Optical frequency metrology, Nature 416, 233237 (2002) CrossRefGoogle ScholarPubMed
Hänsch, T.W., Alnis, J., Fendel, P., Fischer, M., Gohle, C., Herrmann, M., Holzwarth, R., Kolachevsky, N., Udem, Th., Zimmermann, M., Precision spectroscopy of hydrogen and femtosecond laser frequency combs, Philos. Trans. R. Soc. A 363, 21552163 (2005) CrossRefGoogle ScholarPubMed
Quinn, T.J., Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001), Metrologia 40, 103133 (2003) CrossRefGoogle Scholar
Long-Sheng, Ma, Bi, Z., Bartels, A., Robertsson, L., Zucco, M., Windeler, R.S., Wilpers, G., Oates, C., Hollberg, L., Diddams, S.A., Optical frequency synthesizer and comparaison with uncertainty at the 10–19 level, Science 303, 18431845 (2004) Google Scholar
Holzwarth, R., Udem, T., Hänsch, T.W., Knight, J.C., Wadsworth, W.J., Russell, P.St.J., Optical frequency synthesizer for precision spectroscopy, Phys. Rev. Lett. 85, 22642267 (2000) CrossRefGoogle ScholarPubMed
H.L. Telle, U. Sterr, Generation and metrological application of optical frequency combs (frequency Measurement and Control), edited by S.N. Luiten (Springer, Berlin, 2001), pp. 295–313
Jones, D.J., Diddams, S.A., Ranka, J.K., Stentz, A., Windeler, R.S., Hall, J.L., Cundiff, S.T., Carrier-envelope phase control of femtosecond mode-locked Lasers and direct optical frequency synthesis, Science 288, 635639 (2000) CrossRefGoogle ScholarPubMed
Jones, R.J., Cheng, W., Holman, K.W., Chen, L., Hall, J.L., Ye, J., Absolute-frequency measurement of the iodine-based length standard at 514.67 nm, Appl. Phys. B 74, 597601 (2002) CrossRefGoogle Scholar
Ferreira-Barragáns, S., Ma Mar Pérez-Hernández, B. Samoudi, E. Prieto, Realisation of the metre by optical frequency comb : applications in length metrology, Proc. SPIE 8001, 18 (2011) Google Scholar
Allan, D.W., Should the classical variance be used as a basic measure in standard metrology?, IEEE Trans. Instrum. Meas. 36 (1987) Google Scholar
W.J. Riley, Handbook of Frequency Stability Analysis (NIST Special Publications, 2008), p. 1065
Quinn, T.J., Results of recent international comparisons of national measurement standards carried out by the BIPM, 1996, Metrologia 33, 271287 (1996) CrossRefGoogle Scholar
Darnedle, H., Rowley, W.R.C., Bertinetto, F., Millerioux, Y., Haitjema, H., Wetzels, S., Pirée, H., Prieto, E., M. Mar Pérez, B. Vaucher, A. Chartier, J.-M. Chartier, International comparisons of national measurement standards carried out by the BIPM, Metrologia 36, 199206 (1999)Google Scholar