Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T17:29:24.976Z Has data issue: false hasContentIssue false

A 2.45-GHz dual-diode rectenna and rectenna arrays for wireless remote supply applications

Published online by Cambridge University Press:  09 June 2011

Hakim Takhedmit*
Affiliation:
Université Paris-Est, Laboratoire ESYCOM (EA2552), UPEMLV, 5 Bd Descartes, 77454 Marne-la-Vallée, Cedex 2, France. Phone: + 33160957279. Laboratoire AMPERE – UMR 5005, EC-INSA Lyon, 36 Av Guy de Collongue, 69130 Lyon, France.
Laurent Cirio
Affiliation:
Université Paris-Est, Laboratoire ESYCOM (EA2552), UPEMLV, 5 Bd Descartes, 77454 Marne-la-Vallée, Cedex 2, France. Phone: + 33160957279.
Boubekeur Merabet
Affiliation:
Laboratoire SATIE - UMR 8029, ENS Cachan, 61 Av du président Wilson, 94235 Cachan, France. Laboratoire AMPERE – UMR 5005, EC-INSA Lyon, 36 Av Guy de Collongue, 69130 Lyon, France.
Bruno Allard
Affiliation:
Laboratoire AMPERE – UMR 5005, EC-INSA Lyon, 36 Av Guy de Collongue, 69130 Lyon, France.
François Costa
Affiliation:
Laboratoire SATIE - UMR 8029, ENS Cachan, 61 Av du président Wilson, 94235 Cachan, France.
Christian Vollaire
Affiliation:
Laboratoire AMPERE – UMR 5005, EC-INSA Lyon, 36 Av Guy de Collongue, 69130 Lyon, France.
Odile Picon
Affiliation:
Université Paris-Est, Laboratoire ESYCOM (EA2552), UPEMLV, 5 Bd Descartes, 77454 Marne-la-Vallée, Cedex 2, France. Phone: + 33160957279.
*
Corresponding author: H. Takhedmit Email: hakim.takhedmit@univ-mlv.fr

Abstract

This paper describes a compact and efficient rectenna based on a dual-diode microstrip rectifier at 2.45 GHz. This circuit has been designed and optimized using a global analysis technique which associates electromagnetic and circuit approaches. Due to the differential topology of the rectifier, neither input low-pass filter nor via-hole connections are needed. This makes the structure more compact reducing losses. Measurements of a single rectenna element show 83% efficiency over an optimal load of 1050 Ω at a power density of 0.31 mW/cm2. To increase the received RF power and then increase dc power over the load, identical rectennas have been interconnected to form arrays. Two and four elements rectenna arrays, connected either in parallel or in series, have been developed. It was shown that by properly choosing the interconnection topology and the optimal output load, higher dc voltage or dc power have been obtained. The four-element series-connected array can provide experimentally up to 3.85 times output dc voltage compared to the single rectenna. The parallel-connected rectenna arrays generate approximately 2.15 and 3.75 times output dc power for two and four elements, respectively.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brown, W.C.: The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech., MTT-32 (9) (1984), 12301242.CrossRefGoogle Scholar
[2]Ren, Y.J.; Chang, K.: 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission. IEEE Trans. Microw. Theory Tech., 54 (4) (2006), 14951502.Google Scholar
[3]Douyere, A.; Lan Sun Luk, J.D.; Alicalapa, F.: High efficiency microwave rectenna circuit: modeling and design. Electron. Lett., 44 (24) (2008), 14091410.CrossRefGoogle Scholar
[4]Zbitou, J.; Latrach, M.; Toutain, S.: Hybrid rectenna and monolithic integrated zero-bias microwave rectifier. IEEE Trans. Microw. Theory Tech., 54 (1) (2006), 147152.CrossRefGoogle Scholar
[5]Akkermans, J.A.G.; van Beurden, M.C.; Doodeman, G.J.N.; Visser, H.J.: Analytical models for low-power rectenna design. IEEE Antennas Wirel. Propag. Lett., 4 (2005), 187190.CrossRefGoogle Scholar
[6]Strassner, B.; Chang, K.: 5.8-GHz circularly polarized rectifying antenna for wireless microwave power transmission. IEEE Trans. Microw. Theory Tech., 50 (8) (2002), 18701876.CrossRefGoogle Scholar
[7]Heikkinen, J.; Kivikoski, M.: Low-profile circularly polarized rectifying antenna for wireless power transmission at 5.8 GHz. IEEE Microw. Wirel. Compon. Lett., 14 (4) (2004), 162164.CrossRefGoogle Scholar
[8]Heikkinen, J.; Kivikoski, M.: A novel dual-frequency circularly polarized rectenna. IEEE Antennas Wirel. Propag. Lett., 2 (2003), 330333.CrossRefGoogle Scholar
[9]Epp, L.W.; Khan, A.R.; Smith, H.K.; Smith, R.P.: A compact dual-polarized 8.51-GHz rectenna for high-voltage (50 V) actuator applications. IEEE Trans. Microw. Theory Tech., 48 (1) (2000), 111120.CrossRefGoogle Scholar
[10]Bharj, S.S.; Camisa, R.; Grober, S.; Wozniak, F.; Pendleton, E.: High efficiency C-band 1000 element rectenna array for microwave powered applications, in IEEE MTT-S Int. Microw. Symp. Digest, Albuquerque, NM, June 1992, 301–301.CrossRefGoogle Scholar
[11]Hagerty, J.A.; Popovic, Z.: An experimental and theoretical characterization of a broad-band arbitrarily-polarized rectenna array. IEEE MTT-S Int. Microwave Symp. Dig., 3 (2001), 18551858.Google Scholar
[12]Shinohara, N.; Matsumoto, H.: Experimental study of large rectenna array for microwave energy transmission. IEEE Trans. Microw. Theory Tech., 46 (3) (1998), 261268.CrossRefGoogle Scholar
[13]Farinholt, K.M.; Park, G.; Farrar, C.R.: RF energy transmission for low-power wireless impedance sensor node. IEEE Sens. J., 9 (7) (2009), 793800.CrossRefGoogle Scholar
[14]Takhedmit, H.; Merabet, B.; Cirio, L.; Allard, B.; Costa, F.; Vollaire, C.; Picon, O.: Design of a 2.45 GHz rectenna using a global analysis technique in Proc. of the 3rd European Conf. on Antennas and Propagation, EuCAP 2009, Berlin, Germany, 23–27, March 2009. 2321–2325.Google Scholar
[15]Takhedmit, H. et al. : Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device. Electron. Lett., 46 (12) (2010), 811812.CrossRefGoogle Scholar
[16]Shinohara, N.; Matsumoto, H.: Dependence of dc output of a rectenna array on the method of interconnection of its array elements. Scr. Tech. Electron. Commun. Japan, 125 (1) (1998), 917.Google Scholar
[17]HSMS-286x, HSMS-282x series. Surface Mount Microwave Schottky Detector Diodes. Available: http://www.avagotech.com/Google Scholar
[18]Yoo, T.-W.; Chang, K.: Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans. Microw. Theory Tech., 40 (6) (1992), 12591266.CrossRefGoogle Scholar
[19]Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd ed., John Wiley & Sons, Inc., 2005.Google Scholar
[20]Takhedmit, H. et al. : A 2.45 GHz low cost and efficient rectenna, in Proc. of the 4th European Conf. on Antennas and Propagation, EuCAP 2010, Barcelona, Spain, 12–16 April 2010, pp. 15.Google Scholar