Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T23:17:38.875Z Has data issue: false hasContentIssue false

60 GHz short-range communications: channel measurements, analysis, and modeling

Published online by Cambridge University Press:  22 March 2011

Alexis Paolo Garcia Ariza*
Affiliation:
Ilmenau University of Technology, Institute of Information Technology, Helmholtzplatz 2, 98684 Ilmenau, Germany. Phone: +49-3677-691397.
Uwe Trautwein
Affiliation:
MEDAV GmbH, Gräfenberger Strasse 32-34, 91080 Uttenreuth, Germany.
Robert Müller
Affiliation:
Ilmenau University of Technology, Institute of Information Technology, Helmholtzplatz 2, 98684 Ilmenau, Germany. Phone: +49-3677-691397.
Frank Wollenschläger
Affiliation:
Ilmenau University of Technology, Institute of Information Technology, Helmholtzplatz 2, 98684 Ilmenau, Germany. Phone: +49-3677-691397.
Reiner S. Thomä
Affiliation:
Ilmenau University of Technology, Institute of Information Technology, Helmholtzplatz 2, 98684 Ilmenau, Germany. Phone: +49-3677-691397.
Jürgen Kunisch
Affiliation:
IMST GmbH, Carl-Friedrich-Gauss-Strasse 2-4, 47575 Kamp-Lintfort, Germany.
Itziar de la Torre
Affiliation:
IMST GmbH, Carl-Friedrich-Gauss-Strasse 2-4, 47575 Kamp-Lintfort, Germany.
Robert Felbecker
Affiliation:
Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany.
Michael Peter
Affiliation:
Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany.
Wilhelm Keusgen
Affiliation:
Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany.
*
Corresponding author: A. P. Garcia Ariza Email: alexis-paolo.garcia-ariza@tu-ilmenau.de

Abstract

This article presents measurement and analysis results for 60 GHz short-range wideband radio channels. We consider two scenarios, referred to as “very-high-rate extended-range” (VHR-E) and “ultra-high-rate cordless” (UHR-C). The VHR-E measurements aimed at 60 GHz fixed networks for an Airbus A340 cabin both under static and dynamic (shadowing due to passenger movement) channel conditions. We describe the channel sounder used for the VHR-E measurements and present a simple multipath model derived from the measurements. Furthermore, simulations show the feasibility of the ray-tracing approach for this kind of channel. As a typical UHR-C use case, a data kiosk scenario was investigated. Various propagation conditions are analyzed with respect to channel gain, time dispersion, and frequency selectivity.

Type
Research Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[2]Yang, H.; Smulders, P.F.M.; Herben, M.H.A.J.: Indoor channel measurements and analysis in the frequency bands 2 GHz and 60 GHz, in IEEE 16th Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC), Berlin, 2005.Google Scholar
[3]Garcia, A.P. et al. : 60 GHz in-cabin real-time channel sounding, in Fourth Int. Conf. on Communications and Networking in China (ChinaCOM), Xian, 2009.CrossRefGoogle Scholar
[4]Garcia, A.P.; Kotterman, W.; Trautwein, U.; Bruckner, D.; Kunisch, J.; Thoma, R.S.: 60 GHz time-variant shadowing characterization within an Airbus 340, in Proc. 4th European Conf. on Antennas and Propagation (EuCAP), Barcelona, 2010.Google Scholar
[5]Singh, H.; Oh, J.; Kweon, C.Y.; Qin, X.; Shao, H.; Ngo, C.: A 60 GHz wireless network for enabling uncompressed video communication. IEEE Commun. Mag., 46 (12) (2008), 7178.CrossRefGoogle Scholar
[6]Wollenschlager, F. et al. : Measurement of a 60 GHz antenna array fed by a planar waveguide-to-microstrip transition integrated in low-temperature co-fired ceramics, in 3rd European Conference on Antennas and Propagation (EuCAP), Berlin, 2009.Google Scholar
[7]Martínez-Vázquez, M.; Oikonomopoulos-Zachos, C.; Maulwurf, K.; Wollenschläger, F.; Stephan, R.; Hein, M.A.; Xia, L.; Müller, J.; Estañ, C.; Dombrowski, K.; Brankovic, V.; Radovic, D.: Highly integrated antennas and front-ends for 60 GHz WLAN Applications, EuMA International Journal of Microwave and Wireless Technologies, Vol. 3, No. 2, 2011.Google Scholar
[8]Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications – Amendment 6: enhancements for very high throughput in the 60 GHz band, IEEE P802.11ad/D1, September 2010.Google Scholar
[9]Kmec, M.; Sachs, J.; Peyerl, P.; Rauschenbach, P.; Thomä, R.S.; Zetik, R.: A novel ultra-wideband real-time MIMO channel sounder architecture, in Int. Union of Radio Science (URSI): XXVIII General Assembly, New Delhi, 2005.Google Scholar
[10]Garcia, A.P. et al. : 60 GHz-ultrawideband real-time multi-antenna channel sounding for multi giga-bit/s access, in IEEE 72nd Vehicular Technology Conf. (VTC-Fall), Ottawa, 2010.Google Scholar
[11]Garcia, A.P. et al. : Dual-polarized architecture for ultrawideband channel sounding at 60 GHz with digital/analog phase control based on 0.25 µm SiGe BiCMOS and LTCC technology, in 5th European Conf. on Antennas and Propagation (EuCAP), Rome, 2011.Google Scholar
[12]Kunisch, J.; Pamp, J.: UWB radio channel modeling considerations, in Proc. Int. Conf. Electromagnetics in Adv. Applications (ICEAA), Turin, 2003.Google Scholar
[13]Molisch, A.F. et al. : IEEE 802.15.4a Channel Model –Final Report, IEEE 802.15.4a WPAN Task Group, 2005.Google Scholar
[14]Saleh, A.; Valenzuela, R.: A statistical model for indoor multipath propagation. IEEE J. Sel. Areas Commun, SAC-5 (2) (1987), 128137.Google Scholar
[16]Felbecker, R.; Keusgen, W.; Peter, M.: Ray-tracing simulations of the 60 GHz incabin radio channel, in Int. Union of Radio Science (URSI): XXIX General Assembly, Chicago, 2008.Google Scholar
[17]Schulte, B.; Peter, M.; Felbecker, R.; Keusgen, W.; Steffen, R.; Schumacher, H.; Hellfeld, M.; Barghouthi, A.; Ziegler, V.: 60 GHz WLAN Applications and Implemention Aspects, EuMA International Journal of Microwave and Wireless Technologies, Vol. 3, No. 2, 2011.Google Scholar
[18]Peter, M.; Keusgen, W.; Kortke, A.: Temporal structure of the 60 GHz wireless channel, in 2nd Int. ITG Conf. on Antennas (INICA), Munich, 2007.Google Scholar
[19]Peter, M.; Felbecker, R.; Keusgen, W.; Hillebrand, J.: Measurement-based investigation of 60 GHz broadband transmission for wireless in-car communication, in IEEE 70th Vehicular Technology Conf. (VTC-Fall), Anchorage, 2009.CrossRefGoogle Scholar
[20]Krone, S.; Guderian, F.; Fettweis, G.P.; Petri, M.; Piz, M.; Marinkovic, M.; Peter, M.; Felbecker, R.; Keusgen, W.: Physical layer design, link budget analysis and digital baseband implementation for 60 GHz short-range applications, EuMA International Journal of Microwave and Wireless Technologies, Vol. 3, No. 2, 2011.Google Scholar
[21]Ulusoy, A.C.; Liu, G.; Peter, M.; Felbecker, R.; Abdine, H. Y.; Schumacher, H.: A BPSK/QPSK receiver architecture suitable for low-cost ultra-high rate 60 GHz wireless communications, in European Microwave Conf. (EuMC), Paris, 2010.Google Scholar