Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T20:04:03.944Z Has data issue: false hasContentIssue false

A 77-GHz antenna and fully integrated radar transceiver in package

Published online by Cambridge University Press:  16 February 2012

A. Fischer*
Affiliation:
Christian Doppler Laboratory for Integrated Radar Sensors, Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria
A. Stelzer
Affiliation:
Christian Doppler Laboratory for Integrated Radar Sensors, Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria Institute for Communications Engineering and RF-Systems, Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria
L. Maurer
Affiliation:
DICE GmbH & Co KG, Freistädter Str. 400, 4040 Linz, Austria
*
Corresponding author: A. Fischer Email: a.fischer@nthfs.jku.at

Abstract

A 77-GHz–directional folded dipole antenna integrated in an embedded wafer level ball grid array package is presented. For the characterization of the antenna, a frequency multiplier is embedded, which scales the 4.25-GHz input signal up to 76.5 GHz and allows the use of a commercial signal source. The antenna structure is manufactured at the metallic layer, in the fan-out area of the package, and is directly connected to the monolithically integrated transceiver. The gain of the antenna is about 7 dBi, measured over a large bandwidth of about 8 GHz. The combination of the frequency multiplier with a 77-GHz transceiver and the on-package antenna is a promising approach for a system-in-package to future radar modules for automotive radar applications. Such a module avoids 77-GHz transitions to the printed circuit board and hence simplifies the design and manufacturing of the radar sensor significantly.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Forstner, H.-P. et al. : A 77GHz 4-channel automotive radar transceiver in SiGe, in 2008 IEEE Radio Frequency Integrated Circuits Symp., Atlanta, GA, June 2008, 233236.Google Scholar
[2]Zhang, Y.; Liu, D.: Antenna-on-chip and antenna-in-package solutions to highly integrated millimeter-wave devices for wireless communications, IEEE Trans. Antennas Propag., 57(10) (2009), 28302841.CrossRefGoogle Scholar
[3]Hasch, J.; Wostradowski, U.; Gaier, S.; Hansen, T.: 77 GHz radar transceiver with dual integrated antenna elements, in German Microwave Conf., March 2010, 280283.Google Scholar
[4]Kam, D.G.; Liu, D.; Natarajan, A.; Reynolds, S.; Chen, H.-C.; and Floyd, B.: LTCC packages with embedded phased-array antennas for 60 GHz communications, IEEE Microw. Wirel. Compon. Lett., 21(3) (2011), 142144.CrossRefGoogle Scholar
[5]Fischer, A.; Starzer, F.; Forstner, H.-P.; Kolmhofer, E.; Stelzer, A.: A 77-GHz SiGe frequency multiplier (×18) for radar transceivers, in Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2010 IEEE, October 2010, 7376.Google Scholar
[6]Wagner, C.; Forstner, H.P.; Haider, G.; Stelzer, A.; Jäger, H.: A 79-GHz single-chip radar transceiver with switchable TX and LO feedthrough in a silicon-germanium technology, IEEE Bipolar/BiCMOS Circuit Technology Meeting, Monterey, CA, 2008, 105108.Google Scholar
[7]Trotta, S.; Dehlink, B.; Ghazinour, A.; Morgan, D.; John, J.: A 77GHz 3.3V 4-channel transceiver in SiGe BiCMOS technology, in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting BCTM 2009, October 12–14, 2009, 186189.Google Scholar
[8]Nicolson, S.; Chevalier, P.; Sautreuil, B.; Voinigescu, S.: Single-chip W-band SiGe HBT transceivers and receivers for doppler radar and millimeter-wave imaging. IEEE J. Solid-State Circuits, 43(10) (2008), 22062217.Google Scholar
[9]Brunnbauer, M.; Furgut, E.; Beer, G.; Meyer, T.: Embedded wafer level ball grid array (eWLB), in Eighth Electronics Packaging Technology Conf., 2006. EPTC'06, December 2006, 15.Google Scholar
[10]Brunnbauer, M.; Furgut, E.; Beer, G.; Meyer, T.; Hedler, H.; Belonio, J.; Nomura, E.; Kiuchi, K.; Kobayashi, K.: An embedded device technology based on a molded reconfigured wafer, in Proc. 56th Electronic Components and Technology Conf., 2006. 2006, 5.Google Scholar
[11]Brunnbauer, M.; Meyer, T.; Ofner, G.; Mueller, K.; Hagen, R.: Embedded Wafer Level Ball Grid Array (eWLB), in Electronic Manufacturing Technology Symp. (IEMT), 2008 33rd IEEE/CPMT Int., November 2008, 16.CrossRefGoogle Scholar
[12]Böck, J. et al. : SiGe bipolar technology for automotive radar applications, in Proc. Meeting Bipolar/BiCMOS Circuits and Technology, September 13–14, 2004, 8487.Google Scholar
[13]Zhang, C.; Kuhn, M.; Merkl, B.; Fathy, A.; Mahfouz, M.: Real-time noncoherent UWB positioning radar with millimeter range accuracy: theory and experiment, IEEE Trans. Microw. Theory Techn. 58(1) (2010), 920.Google Scholar
[14]Feger, R.; Kolmhofer, E.; Starzer, F.; Wiesinger, F.; Scheiblhofer, S.; Stelzer, A.: A heterodyne 77-GHz FMCW radar with offset PLL frequency stabilization, in Wireless Sensors and Sensor Networks (WiSNet), 2011. IEEE Topical Conf., January 2011, 912.Google Scholar
[15]Jain, V.; Tzeng, F.; Zhou, L.; Heydari, P.: A single-chip dual-band 22-to-29GHz/77-to-81GHz BiCMOS transceiver for automotive radars, in Solid-State Circuits Conf. – Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, February 2009, 308309, 309a.CrossRefGoogle Scholar