Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T21:27:35.176Z Has data issue: false hasContentIssue false

Advanced characterization of a W-band phase shifter based on liquid crystals and MEMS technology

Published online by Cambridge University Press:  24 April 2012

Carsten Fritzsch*
Affiliation:
Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstrasse 25, 64283 Darmstadt, Germany. Phone: +49 6151 162862
Flavio Giacomozzi
Affiliation:
Fondazione Bruno Kessler FBK, Via Sommarive 18, I-38123 Povo Trento, Italy.
Onur Hamza Karabey
Affiliation:
Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstrasse 25, 64283 Darmstadt, Germany. Phone: +49 6151 162862
Saygin Bildik
Affiliation:
Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstrasse 25, 64283 Darmstadt, Germany. Phone: +49 6151 162862
Sabrina Colpo
Affiliation:
Fondazione Bruno Kessler FBK, Via Sommarive 18, I-38123 Povo Trento, Italy.
Rolf Jakoby
Affiliation:
Institute for Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstrasse 25, 64283 Darmstadt, Germany. Phone: +49 6151 162862
*
Corresponding author: Carsten Fritzsch Email: fritzsch@imp.tu-darmstadt.de

Abstract

In this paper, we present a continuously tunable phase shifter realized in MEMS technology. Varactors with liquid crystal as a tunable dielectric layer underneath gold bridges are used to build a loaded line phase shifter. Measurements show that the phase shifter has a differential phase shift of 92°, a figure of merit (FoM) of 42°/dB and an input matching of −19 dB at 76 GHz.The tuning speed of the phase shifter is measured at different temperatures between 10 and 50°C. The realized phase shifter can be used in combination with MEMS switches in order to build a 360° tunable reflection phase shifter.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Rebeiz, G.M.: RF MEMS: Theory, Design, and Technology, John Wiley and Sons, 2003.CrossRefGoogle Scholar
[2]Barker, N.; Rebeiz, G.: Optimization of distributed MEMS phase shifters, in 1999 IEEE MTT-S Int. Microwave Symp. Digest, (1), (1999), 299302.Google Scholar
[3]Van Caekenberghe, K.; Vaha-Heikkila, T.: An analog RF MEMS slotline true-time-delay phase shifter. IEEE Trans. Microw. Theory Techn., 56 (9) (2008), 21512159.CrossRefGoogle Scholar
[4]Du, Y.; Bao, J.; Zhao, X.: 5-bit MEMS distributed phase shifter. Electron. Lett. 46 (21) (2010), 1452.CrossRefGoogle Scholar
[5]Lim, K.C.; Margerum, J.D.; Lackner, A.M.: Liquid crystal millimeter wave electronic phase shifter. Appl. Phys. Lett., 62 (10) (1993), 1065.CrossRefGoogle Scholar
[6]Gaebler, A.; Goelden, F.; Manabe, A.; Goebel, M.; Mueller, S.; Jakoby, R.: Investigation of high performance transmission line phase shifters based on liquid crystal, in Proc. European Microwave Conf. 2009, October 2009, 594597.Google Scholar
[7]Dolfi, D.; Labeyrie, M.; Joffre, P.; Huignard, J.: Liquid crystal microwave phase shifter. Electron. Lett., 29 (10) (1993), 926.CrossRefGoogle Scholar
[8]Martin, N.; Laurent, P.; Prigent, G.; Gelin, P.; Huret, F.: Improvement of an inverted microstrip line-based microwave tunable phase-shifter using liquid crystal, in 33rd European Microwave Conf. 2003, 2003, 14171420.Google Scholar
[9]Mueller, S.; Scheele, P.; Weil, C.; Wittek, M.; Hock, C.; Jakoby, R.: Tunable passive phase shifter for microwave applications using highly anisotropic liquid crystals, in Microwave Symp. Digest, 2004 IEEE MTT-S International, vol. 2, 2004, 11531156.Google Scholar
[10]Koeberle, M.; Hoefle, M.; Chen, M.; Penirschke, A.; Jakoby, R.: Electrically tunable Liquid Crystal phase shifter in antipodal finline technology for reconfigurable W-Band Vivaldi antenna array concepts, in Proc. of the 5th European Conf. on Antennas and Propagation (EUCAP), 2011, 15361539.Google Scholar
[11]Goelden, F.; Gaebler, A.; Goebel, M.; Manabe, A.; Mueller, S.; Jakoby, R.: Tunable liquid crystal phase shifter for microwave frequencies. Electron. Lett., 45 (13) (2009), 686.CrossRefGoogle Scholar
[12]Karabey, O.H.; Goelden, F.; Gaebler, A.; Strunck, S.; Jakoby, R.: Tunable loaded line phase shifters for microwave applications, in 2011 IEEE MTT-S Int. Microwave Symp., June 2011, 14.Google Scholar
[13]Moessinger, A.; Fritzsch, C.; Bildik, S.; Jakoby, R.: Compact tunable Ka-band phase shifter based on liquid crystals, in 2010 IEEE MTT-S Int. Microwave Symp. Digest (MTT), vol. 1, no. c, 2010, 10201023.CrossRefGoogle Scholar
[14]Bulja, S.; Mirshekar-Syahkal, D.; Yazdanpanahi, M.; James, R.; Day, S.; Fernandez, F.: 60 GHz reflection type phase shifter based on liquid crystal, in 2010 IEEE Radio and Wireless Symp (RWS), 2010, 697699.CrossRefGoogle Scholar
[15]Fritzsch, C. et al. : Continuously tunable W-band phase shifter based on liquid crystals and MEMS technology, in Proc. of the 41st European Microwave Conf., no. October, 2011, 10831086.Google Scholar
[16]Moessinger, A.; Dieter, S.; Menzel, W.; Mueller, S.; Jakoby, R.: Realization and characterization of a 77 GHz reconfigurable liquid crystal reflectarray, in 2009 13th International Symp on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, February 2009, 14.Google Scholar
[17]Goelden, F.; Lapanik, A.; Gaebler, A.; Mueller, S.; Haase, W.; Jakoby, R.: Characterization and application of liquid crystals at microwave frequencies. Frequenz, 62 (3–4) (2008), 5761.CrossRefGoogle Scholar
[18]Goelden, F.; Lapanik, A.; Gaebler, A.; Mueller, S.; Haase, W.; Jakoby, R.: Systematic investigation of nematic liquid crystal mixtures at 30 GHz, in 2007 Digest of the IEEE/LEOS Summer Topical Meetings, vol. 2, no. 3, July 2007, 202203.CrossRefGoogle Scholar
[19]Pozar, D.: Microwave Engineering, John Wiley and Sons, 2005.Google Scholar
[20]Sonnet Software: Sonnet Suites. [online]. Available: http://www.sonnetsoftware.com/Google Scholar
[21]Yang, D.-K.; Wu, S.-T.: Fundamentals of Liquid Crystal Devices, John Wiley and Sons, 2006.CrossRefGoogle Scholar