Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T01:07:13.120Z Has data issue: false hasContentIssue false

Auto-generation of passive scalable macromodels for microwave components using scattered sequential sampling

Published online by Cambridge University Press:  19 February 2014

Krishnan Chemmangat*
Affiliation:
Ghent University – iMinds, Gaston Crommenlaan 8 Bus 201, B-9050 Gent, Belgium
Tom Dhaene
Affiliation:
Ghent University – iMinds, Gaston Crommenlaan 8 Bus 201, B-9050 Gent, Belgium
Luc Knockaert
Affiliation:
Ghent University – iMinds, Gaston Crommenlaan 8 Bus 201, B-9050 Gent, Belgium
*
Corresponding author: Krishnan Chemmangat Email: krishnan.cmc@intec.ugent.be

Abstract

This paper presents a method for automatic construction of stable and passive scalable macromodels for parameterized frequency responses. The method requires very little prior knowledge to build the scalable macromodels thereby considerably reducing the burden on the designers. The proposed method uses an efficient scattered sequential sampling strategy with as few expensive simulations as possible to generate accurate macromodels for the system using state-of-the-art scalable macromodeling methods. The scalable macromodels can be used as a replacement model for the actual simulator in overall design processes. Pertinent numerical results validate the proposed sequential sampling strategy.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ferranti, F.; Knockaert, L.; Dhaene, T.: Parameterized S-parameter based macromodeling with guaranteed passivity. IEEE Microw. Wirel. Compon. Lett., 19(10)(2009), 608610.Google Scholar
[2] Ferranti, F.; Knockaert, L.; Dhaene, T.: Guaranteed passive parameterized admittance-based macromodeling. IEEE Trans-act. Adv. Packag., 33(3)(2010), 623629.Google Scholar
[3] Triverio, P.; Nakhla, M.; Grivet-Talocia, S.: Passive parametric macromodeling from sampled frequency data, in IEEE Int. Conf. ton Signal Propagation and Inter-connects, May 2010, 117120.Google Scholar
[4] Ferranti, F.; Knockaert, L.; Dhaene, T.; Antonini, G.: Passivity-preserving parametric macromodeling for highly dynamic tabulated data based on Lur'e equations. IEEE Trans-act. Microw. Theory Tech., 58(12)(2010), 36883696.Google Scholar
[5] Ferranti, F.; Knockaert, L.; Dhaene, T.: Passivity-preserving interpolation-based param eterized macromodeling of scattered s-data. IEEE Microw. Wirel. Compon. Lett., 20(3)(2010), 133135.Google Scholar
[6] Ferranti, F.; Knockaert, L.; Dhaene, T.: Passivity-preserving parametric macromodeling by means of scaled and shifted state-space systems. IEEE Transact. Microw. Theory Tech., 59(10)(2011), 23942403.Google Scholar
[7] Peik, S.; Mansour, R.; Chow, Y.: Multidimensional Cauchy method and adaptive sampling for an accurate microwave circuit modeling. IEEE Transact. Microw. Theory Tech., 46(12)(1998), 23642371.CrossRefGoogle Scholar
[8] Lamecki, A.; Kozakowski, P.; Mrozowski, M.: Efficient implementation of the Cauchy method for automated CAD-model construction. IEEE Microw. Wirel. Compon. Lett., 13(7)(2003), 268270.CrossRefGoogle Scholar
[9] Cuyt, A.; Lenin, R.; Becuwe, S.; Verdonk, B.: Adaptive multivariate rational data fit-ting with applications in electromagnetics. IEEE Transact. Microw. Theory Tech., 54(5)(2006), 22652274.CrossRefGoogle Scholar
[10] Devabhaktuni, V.; Chattaraj, B.; Yagoub, M.; Zhang, Q.-J.: Advanced microwave model-ing framework exploiting automatic model generation, knowledge neural networks, and space mapping. IEEE Transact. Microw. Theory Tech., 51(7)(2003), 18221833.Google Scholar
[11] Lamecki, A.; Balewski, L.; Mrozowski, M.: Adaptive CAD-model construction schemes. IEEE Transact. Magn., 45(3)(2009), 15381541.Google Scholar
[12] Basl, P.; Gohary, R.; Bakr, M.; Mansour, R.: Modelling of electromagnetic responses using a robust multi-dimensional Cauchy interpolation technique. IET Microw., Antennas Propag., 4(11)(2010), 19551964.CrossRefGoogle Scholar
[13] Rohrer, R.; Nosrati, H.: Passivity considerations in stability studies of numerical integration algorithms. IEEE Transact. Circuits Syst., 28(9)(1981), 857866.Google Scholar
[14] Chemmangat, K.; Ferranti, F.; Dhaene, T.; Knockaert, L.: Scalable models of microwave system responses using sequential sampling on unstructured grids. Int. J. Numer. Modell. Electron. Netw. Devices Fields, 27(1)(2013), 122137.Google Scholar
[15] Brandts, J.; Korotov, S.; Krizek, M.: Dissection of the path-simplex in ℝ n into n path-subsimplices. Linear Algebr. Appl., 421(23)(2007), 382393.Google Scholar
[16] Brandts, J.; Korotov, S.; Krizek, M.; Solc, J.: On nonobtuse simplicial partitions. SIAM Rev., 51(2)(2009), 317335.CrossRefGoogle Scholar
[17] Li, X.-Y.: Generating well-shaped d-dimensional Delaunay Meshes. Theor. Comp. Sci., 296(1)(2003), 145165.Google Scholar
[18] Constantiniu, A.; Steinmann, P.; Bobach, T.; Farin, G.; Umlauf, G.: The adaptive delaunay tessellation: a neighborhood covering meshing technique. Comput. Mech., 42(5)(2008), 655669.Google Scholar
[19] Gustavsen, B.; Semlyen, A.: Rational approximation of frequency domain responses by vector fitting. IEEE Transact. Power Deliv., 14(3)(1999), 10521061.CrossRefGoogle Scholar
[20] Gustavsen, B.: Fast passivity enforcement for S-parameter models by perturbation of residue matrix eigenvalues. IEEE Transact. Adv. Packag., 33(1)(2010), 257265.Google Scholar
[21] Weiser, A.; Zarantonello, S.E.: A note on piecewise linear and multilinear table inter-polation in many dimensions. Math. Comput., 50(181)(1988), 189196.Google Scholar
[22] Chemmangat, K.; Dhaene, T.; Knockaert, L.: Scalable macromodelling of microwave system responses using sequential sampling with path-simplexes. Electron. Lett., 49(15)(2013), 950952.CrossRefGoogle Scholar
[23] Sergeyev, Y.D.; Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of lipschitz constants. SIAM Optim., 16(3)(2006), 910937.Google Scholar