Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T03:38:16.126Z Has data issue: false hasContentIssue false

Directional propagation channel estimation and analysis in urban environment with panoramic photography

Published online by Cambridge University Press:  07 February 2012

Jean-Marc Conrat*
Affiliation:
Orange Labs, Wireless Engineering Propagation, 6 av des Usines, F-90007 Belfort Cedex, France. Phone: +33 3 84 54 42 68.
Patrice Pajusco
Affiliation:
Télécom Bretagne Lab-STICC, Technopole Brest Iroise, CS83818, F-29238 Brest Cedex 03, France.
*
Corresponding author: J. M. Conrat Email: jeanmarc.conrat@orange.com

Abstract

This article aims to provide readers with a physical understanding of the propagation channel that is complementary to mathematical channel modeling. It presents an analysis of the directional propagation channel based on radiophotos. Radiophotos are graphical objects where directions of arrival are superimposed on three-dimensional (3D) panoramic photographs. The interaction between electro magnetic waves and the environment is immediately identified with these representations. This paper focuses on the direction of arrival at mobile in an urban macrocell environment. The first radiophoto collection illustrates the major propagation phenomena such as reflection, diffraction, or street canyoning. The second collection illustrates typical propagation channel profiles that are classified according to delay, azimuth, and elevation spread values. The paper also describes an original panorama-based method for estimating noise level in the azimuth–elevation domain.

Type
Industrial and Engineering Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Gesbert, D.; Shafi, M.; Da-shan, S.; Smith, P.J.; Naguib, A.: From theory to practice: an overview of MIMO space–time coded wireless systems. IEEE J. Sel. Areas Commun., 21 (2003), 281.CrossRefGoogle Scholar
[2]Goldsmith, A.; Jafar, S.A.; Jindal, N.; Vishwanath, S.: Capacity limits of MIMO channels. IEEE J. Sel. Areas Commun., 21 (2003), 684.CrossRefGoogle Scholar
[3]Almers, P. et al. : Survey of channel and radio propagation models for wireless MIMO systems. Eurasip J. Wirel. Commun. Netw., 2007 (2007), Article ID 19070, 19pp.CrossRefGoogle Scholar
[4]Landmann, M.; Sivasondhivat, K.; Takada, J.I.; Ida, I.; Thomä, R.: Polarization behavior of discrete multipath and diffuse scattering in urban environments at 4.5 GHz. Eurasip J. Wirel. Commun. Netw., 2007 (2007), Article ID 57980, 16pp.CrossRefGoogle Scholar
[5]Laurila, J.; Kalliola, K., Toeltsch, M., Hugl, K., Vainikainen, P., Bonek, E.: Wideband 3D characterization of mobile radio channels in urban environment. IEEE Trans. Antennas Propag., 50 (2002), 233.CrossRefGoogle Scholar
[6]Fleury, B.H.; Jourdan, P.; Stucki, A.: High-resolution channel parameter estimation for MIMO applications using the SAGE algorithm, in Int. Zurich Seminar on Broadband Communications, Zurich, 2002.Google Scholar
[7]Kwakkernaat, M.; de Jong, Y.; Bultitude, R.; Herben, M.: High-resolution angle-of-arrival measurements on physically-nonstationary mobile radio channels. IEEE Trans. Antennas Propag., 56 (2008), 2720.CrossRefGoogle Scholar
[8]Conrat, J.M.; Pajusco, P.; Thiriet, J.Y.: A multibands wideband propagation channel sounder from 2 to 60 GHz, in Instrumentation and Measurement Technology Conf. (IMTC), Sorrento, 2006.Google Scholar
[9]Dunand, A.; Conrat, J.M.: Dual-polarized spatio-temporal Characterization in urban macrocells at 2 GHz, in Vehicular Technology Conf. (VTC – Fall), Baltimore, 2007.Google Scholar
[10]Conrat, J.M.; Dekov, H.; Liénard, M.; Abdelmottaleb, N.: Analysis of the space-time propagation channel behavior in outdoor-to-indoor environment, in Vehicular Technology Conf. (VTC – -Spring), Barcelone, 2009.Google Scholar
[11]Dunand, A.; Conrat, J.M.: Polarization behaviour in urban macrocell environments at 2.2 GHz, in European Conf. on Antenna and Propagation (EuCap), Edinburgh, 2007.Google Scholar
[12]Conrat, J.M.; Pajusco, P.: Clusterization of the MIMO propagation channel in urban macrocells at 2 GHz, in European Conf. on Wireless Technology (ECWT), Paris, 2005.Google Scholar
[13]Conrat, J.M.; Pajusco, P.: Typical MIMO propagation channels in urban macrocells at 2 GHz, in European Wireless Conf. (EW), Paris, 2007.Google Scholar
[14]Kalliola, K.; Laitinen, H.; Vainikainen, P.; Toeltsch, M.; Laurila, J.; Bonek, E.: 3-D double-directional radio channel characterization for urban macrocellular applications. IEEE Trans. Antennas Propag., 51 (2003), 3122.CrossRefGoogle Scholar
[15]Toeltsch, M.; Laurila, J.; Kalliola, K.; Molisch, A.F.; Vainikainen, P.; Bonek, E.: Statistical characterization of urban spatial radio channels. IEEE J. Sel. Areas Commun., 20 (2002), 539CrossRefGoogle Scholar
[16]Kuchar, A.; Rossi, J.P.; Bonek, E.: Directional macro-cell channel characterization from urban measurements. IEEE Trans. Antennas Propag., 48 (2000), 137CrossRefGoogle Scholar
[17]WINNER II Channel Models.: IST Winner Project – Phase II – D1.1.2, 2007.Google Scholar
[18]3GPP.: Spatial Channel Model for MIMO Simulations, http://www.3GPP.org, TR 25.996 V6.1.0., 2003.Google Scholar
[19]Foo, S.E.; Tan, C.M.; Beach, M.A.: Spatial temporal characterization of UTRA FDD channels at the user equipment, in Vehicular Technology Conf. (VTC – Spring), Jeju, 2003.Google Scholar
[20]Vuokko, L.; Kolmonen, V.M.; Kivinen, J.; Vainikainen, P.: Results from 5.3 GHz MIMO measurement campaign, in COST 273 TD(04)193, Duisburg, 2004.Google Scholar
[21]Medbo, J.; Riback, M.; Asplund, H.; Berg, J.E.: MIMO channel characteristics in a small macrocell measured at 5.25 GHz and 200 MHz bandwidth, in Vehicular Technology Conf. (VTC – Fall), Dallas, 2005.Google Scholar
[22]Rautiainen, T.; Juntunen, J.; Kalliola, K.: Propagation analysis at 5.3 GHz in typical and bad urban macrocellular environments, in Vehicular Technology Conf. (VTC – Spring), Dublin, 2007.Google Scholar
[23]Park, J.J.; Kim, W.S.; Kim, M.D.; Chung, H.K.: Measurement results at 3.7 GHz in urban macrocell environment, in Vehicular Technology Conf. (VTC – Fall), Baltimore, 2007.Google Scholar
[24]Jianhua, Z. et al. : Propagation characteristics of wideband MIMO channel in urban micro- and macrocells, in Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC), Cannes, 2008.Google Scholar
[25]Schneider, C.; Narandzic, M.; Kaske, M.; Sommerkorn, G.; Thoma, R.S.: Large scale parameter for the WINNER II channel model at 2.53 GHz in urban macro cell, in Vehicular Technology Conf. (VTC – Spring), Taipei, 2010.Google Scholar