Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T06:18:15.113Z Has data issue: false hasContentIssue false

Electrodynamic analysis of nanoantennas at millimeter and optical wavelength ranges

Published online by Cambridge University Press:  03 April 2013

Alexander M. Lerer*
Affiliation:
Southern Federal University, Zorge Street, 5, Rostov-on-Don, 344090, Russian Federation. Phone: +7 863 297-51-29
Elena V. Golovacheva
Affiliation:
Southern Federal University, Zorge Street, 5, Rostov-on-Don, 344090, Russian Federation. Phone: +7 863 297-51-29
Anatoly B. Kleshchenkov
Affiliation:
Southern Federal University, Zorge Street, 5, Rostov-on-Don, 344090, Russian Federation. Phone: +7 863 297-51-29
Gennady A. Shurov
Affiliation:
Southern Federal University, Zorge Street, 5, Rostov-on-Don, 344090, Russian Federation. Phone: +7 863 297-51-29
Pavel V. Makhno
Affiliation:
Southern Federal University, Zorge Street, 5, Rostov-on-Don, 344090, Russian Federation. Phone: +7 863 297-51-29
Victoria V. Makhno
Affiliation:
Southern Federal University, Zorge Street, 5, Rostov-on-Don, 344090, Russian Federation. Phone: +7 863 297-51-29
*
Corresponding author: A.M. Lerer Email: lerer@sfedu.ru

Abstract

Electrodynamics models and radiophysical properties of carbon nanotube-dipoles (isolated on the substrate lattices), metallic optical antennas and optical antennas, formed from ZnO nanorods coated with metal films were developed and investigated. The models are based on numerically analytical solution of integrodifferential equations describing the diffraction of electromagnetic waves on impedance and dielectric bodies. The use of integral representations of the kernels of integrodifferential equations allowed us to overcome the difficulties of solution, associated with the singularity of kernels and to reduce the computation time by an order of magnitude.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Diachkov, P.N.: Elektronnye svoistva i primenenie nanotrubok. BINOM. Laboratoria Znaniy, Moscow, 2010.Google Scholar
[2]Slepyan, G.Ya.; Maksimenko, S.A.; Lakhtakia, A.; Yevtushenko, O.M.; Gusakov, A.V.: Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions and surface wave propagation. Phys. Rev. B, 60 (1999), 1713617149.Google Scholar
[3]Hanson, G.W.: Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag., 53 (11) (2005), 34263435.Google Scholar
[4]Slepyan, G.Ya.; Shuba, M.V.; Maksimenko, S.A.; Lakhtakia, A.: Theory of optical scattering by achiral carbon nanotubes, and their potential as optical nanoantennas. Phys. Rev. B, 73 (2006), 195416.Google Scholar
[5]Lerer, A.M.: The radio-transmitting properties of a carbon nanotube vibrator located on the boundary of a dielectric. Moscow Univ. Phys. Bull., 65 (5) (2010), 378385.Google Scholar
[6]Lerer, A.M.; Sinyavsky, G.P.: Diffraction of an electromagnetic wave on the finite lattice. Moscow Univ. Phys. Bull., 65 (6) (2010), 476481.CrossRefGoogle Scholar
[7]Bharadwaj, P.; Deutsch, B.; Novotny, L.: Optical antennas. Adv. Opt. Photon., 1 (2009), 438.Google Scholar
[8]Klimov, V.V.: Nanoplazmonika. Phizmatlit, Moscow, 2010, 480p.Google Scholar
[9]Klimov, V.V.: Nanoplazmonika. Usp. Fiz. Nauk., 178 (8) (2008), 875.Google Scholar
[10]Kempa, K. et al. : Carbon nanotubes as optical antennae. Adv. Mater, 19 (2007), 421.Google Scholar
[11]Salandrino, A.; Li, J.; Engheta, N.: Shaping light beams in the nanometer scale: a Yagi-Uda nanoantenna in the optical domain. Phys. Rev. B., 76 (2007), 245403.Google Scholar
[12]Huang, J.S.; Feichtner, T.; Biagioni, P.; Hecht, B.: Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett., 9 (5) (2009), 1897.Google Scholar
[13]Zuev, V.S.; Zueva, G.Ya.: Nanodipoles for an optical phased array. J. Russ. Laser Res., 28 (3) (2007), 272.Google Scholar
[14]Li, J.; Engheta, N.: Core-shell nanowire optical antennas fed by slab waveguides. IEEE Trans. Antennas Propag., 55 (11) (2007), 3018.Google Scholar
[15]Kern, A.M.; Martin, O.J.F.: Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. J. Opt. Soc. Am., 26 (4) (2009), 732.Google Scholar
[16]Lerer, A.M.; Makhno, V.V.; Makhno, P.V.; Yachmenov, A.A.: Calculation of periodic metal nanostructures via the method of approximate boundary conditions. J. Commun. Technol. Electron., 52 (4) (2007), 399405.Google Scholar
[17]Golovacheva, E.V.; Lerer, A.M.; Parkhomenko, N.G.: Diffraction of electromagnetic waves of optical range on a metallic nanovibrator. Moscow Univ. Phys. Bull., 66 (1) (2011), 511.Google Scholar
[18]Lerer, A.M.: Investigation of the properties of planar metal nanodipoles in the optical band. J. Commun. Technol. Electron., 56 (3) (2011), 269277.Google Scholar
[19]Lerer, A.M.; Kleshchenkov, A.B.; Lerer, V.A.; Labun'ko, O.S.: A method for calculation of the characteristics of a system of parallel dipoles excited by stationary and pulse signals. J. Commun. Technol. Electron., 53 (4) (2008), 397405.Google Scholar
[20]Kravchenko, V.F.; Labunko, O.S.; Lerer, A.M., Sinyavsky, G.P.: Vichislitelnie metodi v sovremennoy radiopfizike. Phizmatlit, Moscow, 2009, 464.Google Scholar
[21]Hiznyak, N.G.: Integralnie urovnenia makroskopicheskoy elektrodinamiki. Naukova Dumka, Kiev, 1986, 279.Google Scholar
[23]Makhno, P.V.: Elektrodinamicheskiy analis nanostruktur opticheskogo I rentgenovskogo diapazonov. Dis. Kand. Phys.-Mat Nauk, Rostov-na-Donu, UFU, 2008, 151.Google Scholar
[24]Vainstein, L.A.: Teoria difrakcii I metodi factorizacii. Sovetskoe Radio, Moscow, 1966, 432p.Google Scholar
[25]Lerer, A.M.; Makhno, V.V.; Makhno, P.V.: Calculation of properties of carbon nanotube antennas. Int. J. Microwave Wireless Technol., 2 (6) (2010), 457462.Google Scholar
[26]Lerer, A.M.; Makhno, V.V.; Makhno, P.V.; Shurov, G.A.: Raschet parametrov nanoanten – uglerodnih nanotrbok. Electromagn. Volni Electro. Sist., 15 (2) (2010), 6467.Google Scholar
[27]Lerer, A.M.; Makhno, V.V.; Makhno, P.V.: Electrodinamicheskiy analis nanoanten millemetrovogo, opticheskogo i rengenovskogo diapazonov. Lambert Academic Publishing, Saarbrücken, Germany, 2011, 192.Google Scholar