Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T17:30:06.405Z Has data issue: false hasContentIssue false

A high-gain high-power amplifier MMIC for V-band applications using 100 nm AlGaN/GaN dual-gate HEMTs

Published online by Cambridge University Press:  14 March 2012

Dirk Schwantuschke*
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastrasse 72, D-79108 Freiburg, Germany. Phone: +49 761 5159 449
Christian Haupt
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastrasse 72, D-79108 Freiburg, Germany. Phone: +49 761 5159 449
Rudolf Kiefer
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastrasse 72, D-79108 Freiburg, Germany. Phone: +49 761 5159 449
Peter Brückner
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastrasse 72, D-79108 Freiburg, Germany. Phone: +49 761 5159 449
Matthias Seelmann-Eggebert
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastrasse 72, D-79108 Freiburg, Germany. Phone: +49 761 5159 449
Axel Tessmann
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastrasse 72, D-79108 Freiburg, Germany. Phone: +49 761 5159 449
Michael Mikulla
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastrasse 72, D-79108 Freiburg, Germany. Phone: +49 761 5159 449
Ingmar Kallfass
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastrasse 72, D-79108 Freiburg, Germany. Phone: +49 761 5159 449 Karlsruhe Institute of Technology, Institut für Hochfrequenztechnik und Elektronik, D-76131 Karlsruhe, Germany
Rüdiger Quay
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastrasse 72, D-79108 Freiburg, Germany. Phone: +49 761 5159 449
*
Corresponding author: D. Schwantuschke Email: dirk.schwantuschke@iaf.fraunhofer.de

Abstract

In this paper we present the design and realization of a high-power amplifier in grounded coplanar transmission line technology using AlGaN/GaN dual-gate High electron mobility transistors (HEMTs) with a gate-length of 100 nm to achieve a high gain per stage and high output power. A large-signal model was extracted for the dual-gate HEMT based on the state-space approach. For the fabricated dual-stage amplifier a continuous-wave saturatedoutput power of up to 24.8 dBm (0.84 W/mm) was measured at 63 GHz for 20 V drain bias. A small-signal gain of more than 20 dB was achieved between 56 and 65 GHz.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Higaschiwaki, M.; Minura, T.; Matsui, T.: Development of high-frequency GaN HFETs for millimeter-wave applications. IEICE Trans. Electron., E91-C (7) (2008), 984988.CrossRefGoogle Scholar
[2]Micovic, M. et al. : GaN-MMICs for RF power applications in the 50 GHz to 110 GHz frequency range. Phys. Status Solidi C, 5 (6) (2008), 20442046.CrossRefGoogle Scholar
[3]Micovic, M. et al. : GaN-MMICs Pas for E-band (71 GHz–95 GHz) radio, in Proc. IEEE CSISs, Monterey, 2008, 14.Google Scholar
[4]Micovic, M. et al. : GaN HFET for W-band power applications, In Tech. Dig. IEEE Int. Electron Device Meeting, San Francisco, 2006, 14.Google Scholar
[5]Nakasha, Y. et al. : E-Band 85-mW Oscillator and 1.3-W Amplifier IC's using 0.12-mm GaN HEMTs for Millimeter-wave Transceivers, in IEEE CSIC Symp. Dig., Moneterey, October 2010, 14.Google Scholar
[6]Brown, A.; Brown, K.; Chen, J.; Hwang, K.C.; Kolias, N.; Scott, R.: W-Band GaN power amplifier MMICs, in IEEE MTT-S Int. Microwave Symp. Digest (MTT), Baltimore, 2011, 14.Google Scholar
[7]Tessmann, A.; Haydl, W.H.; Hülsmann, A.; Schlechtweg, M.: High gain cascode MMICs in coplanar technology at W-band frequencies. IEEE Microw. Guid. Wave Lett., 8 (12) (1998), 430431.CrossRefGoogle Scholar
[8]Haupt, C.; Maroldt, S.; Quay, R.; Pletschen, W.; Leuther, A.; Ambacher, O.: Development of high transconductance GaN MMIC technology for millimeter-wave applications. Phys. Status Solidi C, 8 (2) (2011), 297299.CrossRefGoogle Scholar
[9]Quay, R. et al. : Dual-gate GaN MMICs for MM-wave operation. IEEE Microw. Wirel. Compon. Lett., 21 (2) (2011), 9597.CrossRefGoogle Scholar
[10]Seelmann-Eggebert, M.; Merkle, T.; van Raay, F.; Quay, R.; Schlechtweg, M.: A systematic state-space approach to large-signal transistor modeling. IEEE Trans. Microw. Theory Tech., 55 (2) (2007), 195205.CrossRefGoogle Scholar
[11]van Raay, F.; Kompa, G.: A 40 GHz large-signal double-reflectometer waveform measurement system designed for load-pull applications, in Proc. 26th European Microwave Conf., Prague, 1996, 657661.Google Scholar