Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T03:00:08.349Z Has data issue: false hasContentIssue false

Mechanical nanogap switch for low-power on-board electronics

Published online by Cambridge University Press:  20 June 2014

Achref Yahiaoui*
Affiliation:
XLIM UMR 7252 – Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges, France
Emilien Lemoine
Affiliation:
XLIM UMR 7252 – Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges, France
Arnaud Pothier
Affiliation:
XLIM UMR 7252 – Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges, France
Pierre Blondy
Affiliation:
XLIM UMR 7252 – Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges, France
*
Corresponding author: A. Yahiaoui Email: achref.yahiaoui@etu.unilim.fr

Abstract

This paper presents the design fabrication and measurement of a nanogap radio frequency microelectromechanical system (RF MEMS) metal-contact switch. The prosed device generates a relatively high contact force with a low actuation voltage using a dielectric layer between the actuation electrode and the moveable beam. The actuation voltage is decreased with good reliability of the device by scaling down the gap. Beam geometry optimization allowed reaching 126 micronewtons contact force with only 10 V bias voltage. The fabricated miniature switch (80 × 50 × 0.95 µm) has indeed a pull-down voltage of 6 V and a contact resistance <2 Ω with 10 V bias applied. By measuring the S-parameters, the up-state capacitance has been fitted to 22 fF. The remarkable figure-of-merit Ron × Cup = 44 fs reflects the good performance of the device. A cycling test showed the device operated for 90 min without any charging problem noted.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Rebeiz, G.M.; Muldavin, J.B.: RF MEMS switches and switch circuits. IEEE Microw. Mag., 2 (4) (2001), 5971.CrossRefGoogle Scholar
[2]Xu, J.; Chowdhury, M.H.: Latch based interconnect pipelining for high speed integrated circuits, in 2006 IEEE Int. Conf. on Electro/Information Technology, 2006, 295300.Google Scholar
[3]Morris wiSpry, A.: Tunable RF modules for mobile applications, in IMS Emerging Application of RF MEMS Workshop, 2009.Google Scholar
[4]Meindl, J.D.; Chen, Q.; Davis, J.A.: Limits on silicon nanoelectronics for terascale integration. Science, 2044 (9) (2001), 293.Google Scholar
[5]Pethica, J.; Tabor, D.: Contact of characterised metal surfaces at very low loads: deformation and adhesion. Surface Sci., 89 (1979), 182190.Google Scholar
[6]Rebeiz, G.M.: RF MEMS Theory, Design, and Technology, J. Wiley & Sons, New Jersey, 2003.CrossRefGoogle Scholar
[7]Newman, H.S.; Ebel, J.L.; Judy, D.; Maciel, J.: Lifetime measurements on a high-reliability RF-MEMS contact switch. IEEE Microw. Wirel. Compon. Lett., 18 (2) (2008), 100102.Google Scholar
[8]Nishijima, N.; Hung, J.-J.; Rebeiz, G.M.: Parallel-contact metal-contact RF-MEMS switches for high power applications, in 17th IEEE Int. Conf. on Micro Electro Mechanical Systems, 2004. (MEMS), 2004, 781784.Google Scholar
[9]Oberhammer, J.; Stemme, G.: Low-voltage high-isolation DC-to-RF MEMS switch based on an S-shaped film actuator. IEEE Trans. Electron Devices, 51 (1) (2004), 149155.Google Scholar
[10]Sedaghat-Pisheh, H.; Rebeiz, G.M.: Variable spring constant, high contact force RF MEMS switch, in 2010 IEEE MTT-S Int. Microwave Symp. Digest (MTT), 2010, 1–1.CrossRefGoogle Scholar
[11]Reines, I.C.; Rebeiz, G.M.: A robust high power-handling (>10 W) RF MEMS switched capacictor, in 2011 IEEE 24th Int. Conf. on Micro Electro Mechanical Systems (MEMS), 2011, 764767.10+W)+RF+MEMS+switched+capacictor,+in+2011+IEEE+24th+Int.+Conf.+on+Micro+Electro+Mechanical+Systems+(MEMS),+2011,+764–767.>Google Scholar
[12]Goggin, R.; Wong, J.-E.; Hecht, B.; Fitzgerald, P.; Schirmer, M.: Fully integrated, high yielding, high reliability DC contact MEMS switch technology amp; control IC in standard plastic packages, in 2011 IEEE Sensors, 2011, 958961.Google Scholar
[13]Menz, A.; Hoper, R.: Micromechanical silicon RF switch with electroplated solid contacts for high reliability, in Seventh European Microwave Integrated Circuits Conf. (EuMIC 2012), 2012, 453456.Google Scholar
[14]Ke, F.; Miao, J.; Oberhammer, J.: A ruthenium-based multimetal-Contact RF MEMS switch with a corrugated diaphragm. J. Microelectromechanical Syst., 17 (6) (2008), 14471459.Google Scholar
[15]Patel, C.D.; Rebeiz, G.M.: An RF-MEMS switch with mN contact forces, in 2010 IEEE MTT-S Int. Microwave Symp. Digest (MTT), 2010, 1–1.Google Scholar
[16]Lakshminarayanan, B.; Mercier, D.; Rebeiz, G.M.: High-reliability miniature RF-MEMS switched capacitors. IEEE Trans. Microw. Theory Tech., 56 (4) (2008), 971981.Google Scholar
[17]Verger, A.; et al. : Sub-hundred nanosecond reconfiguration capabilities of nanogap RF MEMS switched capacitor, in 2010 IEEE MTT-S Int. Microwave Symp. Digest (MTT), 2010, 1–1.Google Scholar
[18]Rebeiz, G.M.: Phase-noise analysis of MEMS-based circuits and phase shifters. IEEE Trans. Microw. Theory Tech., 50 (5) (2002), 13161323.Google Scholar
[19]Reines, I.; Pillans, B.; Rebeiz, G.M.: A stress-tolerant temperature-stable RF MEMS switched capacitor, in IEEE 22nd Int. Conf. on Micro Electro Mechanical Systems, 2009. (MEMS 2009), 2009, 880883.Google Scholar
[20]Stefanini, R.; Chatras, M.; Blondy, P.; Rebeiz, G.M.: Miniature RF MEMS metal-contact switches for DC-20 GHz applications, in 2011 IEEE MTT-S Int. Microwave Symp. Digest (MTT), 2011, 14.Google Scholar