No CrossRef data available.
A proof of concept of a non-resonant near-field microwave microscope based on a high impedance reflectometer
Published online by Cambridge University Press: 03 June 2013
Abstract
In this paper, we present a non-resonant high impedance reflectometer with a reference impedance close to one of the tip probe of a near-field microwave microscope. We show that for an apex of the tip probe of 100 µm there is an optimum reference impedance close to 1 kΩ. To validate this approach a microwave circuit that makes use of lumped elements has been fabricated. A proof of concept is also explored for capacitance measurements between the tip probe and a metal plate.
Keywords
- Type
- Research Papers
- Information
- International Journal of Microwave and Wireless Technologies , Volume 5 , Special Issue 3: European Microwave Week 2012 , June 2013 , pp. 301 - 308
- Copyright
- Copyright © Cambridge University Press and the European Microwave Association 2013
References
REFERENCES
[1]Gao, C.; Xiang, X.-D.: Quantitative microwave near-field microscopy of dielectric properties. Rev. Sci. Instrum., 69 (11) (1998), 3846–3851.Google Scholar
[2]Anlage, S.M.; Talanov, V.V.; Schwartz, A.R.: Principles of Near-Field Microwave Microscopy, Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, vol. I, Kalinin, S.K. and Gruverman, A. (Ed.), Springer–Verlag, New York, ISBN: 978-0-387-28667-9, 2007, 215–253.Google Scholar
[3]Rouhi, N.; Jain, D.; Burke, P.J.: Nanoscale devices for large-scale applications. IEEE Microw. Mag., 11 (7) (2010), 72–80.Google Scholar
[4]Imtiaz, A.; Pollak, M.; Anlage, S.M.: Near-field microwave microscopy on nanometer length scales. J. Appl. Phys., 97 (4) (2005), 044302.1–044302.6.Google Scholar
[5]Weber, J.C. et al. : A near-field scanning microwave microscope for characterization of inhomogeneous photovoltaics. Rev. Sci. Instrum., 83 (2012), 083702.1–083702.7.Google Scholar
[6]Kharkovsky, S. et al. : Microwave resonant switched-slot probe with perpendicular coaxial feed, in Proc. of IEEE Instrumentation and Measurement Technology Conf. (I2MTC), May 2010, 1299–1303.Google Scholar
[7]Chisum, J.D.; Popović, Z.: Performance limitations and measurement analysis of a near-field microwave microscope for nondestructive and subsurface detection. IEEE Trans. Microw. Theory Tech., 60 (8) (2012), 2605–2615.Google Scholar
[8]Randus, M.; Hoffmann, K.: A method for direct impedance measurement in microwave and millimeter-wave bands. IEEE Trans. Microw. Theory Tech., 59 (8) (2011), 2123–2130.Google Scholar
[9]Huber, H.P. et al. : Calibrated nanoscale dopant profiling using a scanning microwave microscope. J. Appl. Phys., 111 (2012), 014301.1–014301.9.Google Scholar
[10]Nougaret, L. et al. : Gigahertz characterization of a single carbon nanotube. Appl.Phys. Lett., 96 (4) (2010), 042109.1–042109.3.Google Scholar
[11]Chen, F.; Chandrakasan, A.; Stojanovic, V.: An oscilloscope array for high-impedance device characterization. IEEE Proc. ESSCIRC, 11 (7) (2009), 112–115.Google Scholar
[12]Usanov, D.A. et al. : Microwave imaging of the ceramic plate surface with the nanometer metal layer by means of the near-field microscope based on the gunn-diode oscillator, in Proc. 41st European Microwave Conf. (EuMC), October 2011, pp. 210–213.Google Scholar
[13]Imtiaz, A.; Baldwin, T.; Nembach, H.T.; Wallis, T.M.; Kabos, P.: Near-field microwave microscope measurements to characterize bulk material properties. Appl. Phys. Lett., 90 (2007), 243105.1–243105.3.Google Scholar
[14]Imtiaz, A. et al. : Frequency-Selective Contrast on Variably Doped P-Type Silicon with a Scanning Microwave Microscope. J. Appl. Phys., 111 (2012) 093727.1–093727.6.Google Scholar
[15]El Fellahi, A.; Glay, D.; Haddadi, K.; Lasri, T.: High impedance RF four-port reflectometer, in Proc. 41st European Microwave Conf. (EuMC), October 2011, 491–494.Google Scholar
[16]Owen, C.: Owen Resistive Splitter, May 2007. [Online] http://www.microwaves101.com/encyclopedia/Resistive_splitter2.cfmGoogle Scholar
[17]Glay, D.; El Fellahi, A.; Lasri, T.: High impedance reflectometer dedicated to non-resonant near-field microwave microscopy, in Proc. 42nd European Microwave Conf. (EuMC), November 2012.Google Scholar