Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T16:32:46.509Z Has data issue: false hasContentIssue false

Accurate and efficient study of substrate-integrated waveguide devices using iterative wave method

Published online by Cambridge University Press:  27 August 2015

Jamel Ben Romdhan Hajri*
Affiliation:
Sciences Faculty of Tunis, University of Tunis El Manar 2092 Tunis, Tunisie
Hafedh Hrizi
Affiliation:
Sciences Faculty of Tunis, University of Tunis El Manar 2092 Tunis, Tunisie
Noureddine Sboui
Affiliation:
Sciences Faculty of Tunis, University of Tunis El Manar 2092 Tunis, Tunisie
*
Corresponding author: J. Ben Romdhan Hajri Email: hajri.jamel83@gmail.com

Abstract

This paper proposes an efficient and fast analysis of substrate integrated waveguide (SIW) components using a new approach of the iterative method called WCIP, i.e. “Wave Concept Iterative Process”. This method is based on the iterative resolution of waves between two domains. The first is the spectral domain. We use the Floquet–Bloch decomposition to describe all modes in the spectral domain. The second describes the configuration of the circuit in the spatial domain. It allows taking the exact structure according to the appropriate boundary conditions. This method permits to reduce numerical complexity. The convergence of this approach is always guaranteed. The theoretical suggested study is validated by the simulation of two different examples of SIW circuits. The obtained results are in good agreement with those of measurement and with software HFSS simulations, which prove the advantage of this method.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Castellano, T. et al. : Feasibility investigation of low cost substrate integrated waveguide (SIW) directional couplers. Progress Electromagn. Res. B, 59 (2014), 3144.CrossRefGoogle Scholar
[2] Bochra, R.; Mohammed, F.; Tao, J.: Analysis of s-band substrate integrated waveguide power divider, circulator and coupler. IJCSIEA, Int. J. Comput. Sci. Eng. Appl., 4 (2) (2014), 114.Google Scholar
[3] Kang, H.; Lim, S.: Electrically small dual-band substrate-integrated-waveguide electrically small dual-band substrate-integrated-waveguide antennas with fixed low-frequency and tunable high-frequency bands. IEICE Electron. Express, 11 (5–8) (2014).CrossRefGoogle Scholar
[4] Xu, X.; Bosisioand, R.G.; Wu, K.: A new six-port junction based on substrate integrated waveguide technology. IEEE Trans. Microw. Theory Techn., 53 (7) (2005).Google Scholar
[5] Ranjkesh, N.; Shahabadi, M.: Loss mechanisms in SIW and MSIW. Progress Electromagn. Res. B, 4 (2008), 299309.CrossRefGoogle Scholar
[6] Tseng, C.; Chu, T.: Measurement of frequency-dependent equivalent width of substrate integrated waveguide. IEEE Trans. Microw. Theory Techn., 54 (2006), 14311437.CrossRefGoogle Scholar
[7] Xu, F.; Wu, K.: Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans. Microw. Theory Techn., 53 (1) (2005).Google Scholar
[8] Deslandes, D.; Wu, K.: Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide. IEEE Trans. Microw. Theory Techn. , 54 (2006), 25162526.CrossRefGoogle Scholar
[9] Ettorre, M.; Sauleau, R.; Le Coq, L.: Multi-beam multi-layer leaky wave SIW pillbox antenna for millimeter-wave applications. IEEE Trans. Antennas Propag., 59 (4) (2011), 10931100.CrossRefGoogle Scholar
[10] Ettorre, M.; Neto, A.; Gerini, G.; Maci, S.: Leaky-wave slot array antenna fed by a dual reflector system. IEEE Trans. Antennas Propag., 56 (10) (2008), 31433149.CrossRefGoogle Scholar
[11] Valerio, G.; Casaletti, M.; Seljan, J.; Ettorre, M.; Sauleau, R.: Optimized analysis of slotted substrate integrated waveguides by a method-of-moments mode-matching hybrid approach, in Conf. on Electromagnetic in advanced Applications, Iceea 2013, Torino, Italy, 2013.CrossRefGoogle Scholar
[12] Amendola, G.; Arnieri, E.; Boccia, L.: Analysis of lossy SIW structures based on the parallel plates waveguide Green's function. Progress Electromagn. Res. C, 33 (2012), 157169.CrossRefGoogle Scholar
[13] Arnieri, E.; Amendola, G.: Method of moments analysis of slotted substrate integrated waveguide arrays. IEEE Trans. Antennas Propag., 59 (4) (2011), 11481154.CrossRefGoogle Scholar
[14] Hrizi, H.; Sboui, N.: Reducing the numerical calculation in the wave iterative method by image processing techniques. Appl. Comput. Electromagn. Soc. J., 27 (6) (2012).Google Scholar
[15] Sboui, N.; Gharsallah, A.; Baudrand, H.; Gharbi, A.: Global modeling of periodic structure in coplanar wave guide. Microw. Opt. Technol. Lett., 43 (2) (2004), 157160.CrossRefGoogle Scholar
[16] Sboui, N.; Gharsallah, A.; Gharbi, A.; Baudrand, H.: Global modeling of microwave active circuits by an efficient iterative procedure. Int. J. RF Microw. Comput.-Aided Eng., 148 (3) (2001), 209212.Google Scholar
[17] Sboui, N.; Gharsallah, A.; Baudrand, H.; Gharbi, A.: Modélisation Electromagnétique Globale des structures Inhomogènes. OHD2007, Valence, France, 5–8 September 2007.Google Scholar
[18] Hamdi, B.; Aguili, T.; Baudrand, H.: Uni-dimensional planar almost periodic structures analysis to decompose central arbitrary located source in spectral domain. IEEE Antenna Technol. Appl. Electromagn. (Antem), (2012).Google Scholar
[19] Guclu, C.; Campione, S.; Capolino, F.: Array of dipoles near a hyperbolic metamaterial: evanescent-to-propagating Floquet wave transformation. Phys. Rev. b89, 155128 (2014).CrossRefGoogle Scholar
[20] Islam, R.; Zedler, M.; Eleftheriades, G.V.: Modal analysis and wave propagation in finite 2dtransmission-line metamaterials. IEEE Trans. Antennas Propag., 59 (5) (2011), 15621570.CrossRefGoogle Scholar
[21] Zelenchuk, D.; Fusco, V.: Low insertion loss substrate integrated waveguide quasi-elliptic filters for v-band wireless personal area network applications. IET Microw. Antennas Propag., 5 (8) (2011), 921927.CrossRefGoogle Scholar
[22] Guglielmi, M.; Jarry, P.; Kerherver, E.; Roquebrun, O.; Schmitt, D.: A new family of all-inductive dual-mode filters. IEEE Trans. Microw. Theory Tech., 49 (2001), 17641769.CrossRefGoogle Scholar