Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T01:52:21.877Z Has data issue: false hasContentIssue false

Active textile antennas in professional garments for sensing, localisation and communication

Published online by Cambridge University Press:  12 March 2014

Arnaut Dierck*
Affiliation:
Department of Information Technology, Ghent University-IMEC, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium. Phone: +32 9 264 3353
Sam Agneessens
Affiliation:
Department of Information Technology, Ghent University-IMEC, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium. Phone: +32 9 264 3353
Frederick Declercq
Affiliation:
Department of Information Technology, Ghent University-IMEC, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium. Phone: +32 9 264 3353
Bart Spinnewyn
Affiliation:
Department of Information Technology, Ghent University-IMEC, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium. Phone: +32 9 264 3353
Gert-Jan Stockman
Affiliation:
Department of Information Technology, Ghent University-IMEC, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium. Phone: +32 9 264 3353
Patrick Van Torre
Affiliation:
Department of Information Technology, Ghent University-IMEC, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium. Phone: +32 9 264 3353
Luigi Vallozzi
Affiliation:
Department of Information Technology, Ghent University-IMEC, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium. Phone: +32 9 264 3353
Dries Vande Ginste
Affiliation:
Department of Information Technology, Ghent University-IMEC, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium. Phone: +32 9 264 3353
Thomas Vervust
Affiliation:
Ghent University-IMEC, Centre for Microsystems Technology, Technology Park 914, B-9052, Gent-Zwijnaarde, Belgium
Jan Vanfleteren
Affiliation:
Ghent University-IMEC, Centre for Microsystems Technology, Technology Park 914, B-9052, Gent-Zwijnaarde, Belgium
Hendrik Rogier
Affiliation:
Department of Information Technology, Ghent University-IMEC, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium. Phone: +32 9 264 3353
*
Corresponding author: A. Dierck Email: arnaut.dierck@intec.ugent.be

Abstract

New wireless wearable monitoring systems integrated in professional garments require a high degree of reliability and autonomy. Active textile antenna systems may serve as platforms for body-centric sensing, localisation, and wireless communication systems, in the meanwhile being comfortable and invisible to the wearer. We present a new dedicated comprehensive design paradigm and combine this with adapted signal-processing techniques that greatly enhance the robustness and the autonomy of these systems. On the one hand, the large amount of real estate available in professional rescue worker garments may be exploited to deploy multiple textile antennas. On the other hand, the size of each radiator may be designed large enough to ensure high radiation efficiency when deployed on the body. This antenna area is then reused by placing active electronics directly underneath and energy harvesters directly on top of the antenna patch. We illustrate this design paradigm by means of recent textile antenna prototypes integrated in professional garments, providing sensing, positioning, and communication capabilities. In particular, a novel wearable active Galileo E1-band antenna is presented and fully characterized, including noise figure, and linearity performance.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Curone, D. et al. : Assessment of sensing fire fighters uniforms for physiological parameter measurement in harsh environment. IEEE Trans. Inf. Technol. Biomed., 16 (3) (2012), 501511.Google Scholar
[2]Kennedy, T.; Fink, P.; Chu, A.; Champagne, N.; Lin, G.; Khayat, M.: Body-worn E-textile antennas: the good, the low-mass, and the conformal. IEEE Trans. Antennas Propag., 57 (4) (2009), 910918.Google Scholar
[3]Tronquo, A.; Rogier, H.; Hertleer, C.; Van Langenhove, L.: Robust planar textile antenna for wireless body LANs operating in 2.45 GHz ISM band. IEE Electron. Lett., 42 (3) (2006), 142146.Google Scholar
[4]Locher, I.; Klemm, M.; Kirstein, T.; Troster, G.: Design and characterization of purely textile patch antennas. IEEE Trans. Adv. Packag., 29 (2006), 777788Google Scholar
[5]Salonen, P.; Rahmat-Samii, Y.: Textile antennas: effects of antenna bending on input matching and impedance bandwidth. IEEE Aerosp. Electron. Syst. Mag., 22 (2007), 1822.CrossRefGoogle Scholar
[6]Hertleer, C.; Rogier, H.; Vallozzi, L.; Van Langenhove, L.: A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Trans. Antennas Propag., 57 (2009), 919925.Google Scholar
[7]Lilja, J.; Salonen, P.; Kaija, T.; de Maagt, P.: Design and manufacturing of robust textile antennas for harsh environments. IEEE Trans. Antennas Propag., 60 (9) (2012), 41304140.CrossRefGoogle Scholar
[8]Hertleer, C.; Van Laere, A.; Rogier, H.; Van Langenhove, L.: Influence of relative humidity on textile antenna performance. Text. Res. J., 80 (2010), 177183.CrossRefGoogle Scholar
[9]Scarpello, M.L.; Kazani, I.; Hertleer, C.; Rogier, H.; Vande Ginste, D.: Stability and efficiency of screen-printed wearable and washable antennas. IEEE Antennas Wireless Propag. Lett., 11 (2012), 838841.CrossRefGoogle Scholar
[10]Dierck, A.; Declercq, F.; Rogier, H.: Review of active textile antenna co-design and optimization strategies, In 2011 IEEE Int. Conf. on RFID-Technologies and Applications (RFID-TA), September 2011, 194–201.CrossRefGoogle Scholar
[11]Del Prete, M.; Masotti, D.; Arbizzani, N.; Costanzo, A.: Remotely identify and detect by a compact reader with mono-pulse scanning capabilities. IEEE Trans. Microw. Theory Tech., 61 (1) (2013), 641650.CrossRefGoogle Scholar
[12]Masotti, D.; Francia, P.; Costanzo, A.; Rizzoli, V.: Rigorous electromagnetic/circuit-level analysis of time-modulated linear arrays. IEEE Trans. Antennas Propag., 61 (11) (2013), 54655474.CrossRefGoogle Scholar
[13]Masotti, D.; Costanzo, A.; Prete, M.; Rizzoli, V.: Genetic-based design of a tetra-band high-efficiency radio-frequency energy harvesting system. IET Microw. Antennas Propag., 7 (15) (2013), 12541263.Google Scholar
[14]Declercq, F.; Rogier, H.: Active integrated wearable textile antenna with optimized noise characteristics. IEEE Trans. Antennas Propag., 58 (2010), 30503054.CrossRefGoogle Scholar
[15]Dierck, A.; Rogier, H.; Declercq, F.: A wearable active antenna for global positioning system and satellite phone. IEEE Trans. Antennas Propag., 61 (2013), 532538.CrossRefGoogle Scholar
[16]Declercq, F.; Georgiadis, A.; Rogier, H.: Wearable aperture-coupled shorted solar-patch antenna for remote tracking and monitoring applications, In Fifth Eur. Conf. on Antennas and Propagation – EuCAP 2011, Rome, Italy, April 2011, 29922996.Google Scholar
[17]Collado, A.; Georgiadis, A.: Conformal hybrid solar and electromagnetic (em) energy harvesting rectenna. IEEE Trans. Circuits Syst. I: Regul. Pap., 60 (8) (2013), 22252234.Google Scholar
[18]Shynu, S.V.; Roo Ons, M.; Ammann, M.; McCormack, S.; Norton, B.: Dual band a-Si:H solar-slot antenna for 2.4/5.2 GHz WLAN applications, In 2009. EuCAP 2009. Third Eur. Conf. on Antennas and Propagation, 2009, 408410.Google Scholar
[19]Schubert, M.B.; Werner, J.H.: Flexible solar cells for clothing. Mater. Today, 9 (6) (2006), 4250.Google Scholar
[20]Agneessens, S. et al. : Design of a wearable, low-cost, through-wall Doppler radar system. Int. J. Antennas Propag., 2012 (840924) (2012), 9 pages.Google Scholar
[21]Kaivanto, E.; Berg, M.; Salonen, E.; de Maagt, P.: Wearable circularly polarized antenna for personal satellite communication and navigation. IEEE Trans. Antennas Propag., 59 (2011), 44904496.CrossRefGoogle Scholar
[22]Vallozzi, L.; Vandendriessche, W.; Rogier, H.; Hertleer, C.; Scarpello, M.L.: Wearable textile GPS antenna for integration in protective garments, in Proc. Fourth Eur. Conf. on Antennas and Propagation (EuCAP), 2010. Barcelona, Spain, April 12–16 2010.Google Scholar
[23]Salonen, P.; Rahmat-Samii, Y.; Schaffrath, M.; Kivikoski, M.: Effect of textile materials on wearable antenna performance: a case study of GPS antennas, in 2004 IEEE Antennas and Propagation Society Int. Symp., vol. 1, 2004, 459–462.CrossRefGoogle Scholar
[24]Maxim Integrated Products, GPS/GNSS Low Noise Amplifier, MAX2659 data sheet, August 2011.Google Scholar
[25]Biondi, A.; Declercq, F.; De Zutter, D.; Rogier, H.; Vallozzi, L.: Electromagnetic compatibility aware design and testing of intermodulation distortion under multiple co-located sources illumination. IET Sci. Measur. Technol., 6 (2012), 105112.CrossRefGoogle Scholar
[26]Vallozzi, L.; Van Torre, P.; Hertleer, C.; Rogier, H.; Moeneclaey, M.; Verhaevert, J.: Wireless communication for firefighters using dual-polarized textile antennas integrated in their garment. IEEE Trans. Antennas Propag., 58 (2010), 13571368.Google Scholar
[27]Van Torre, P.; Vallozzi, L.; Hertleer, C.; Rogier, H.; Moeneclaey, M.; Verhaevert, J.: Indoor Off-Body Wireless MIMO Communication With Dual Polarized Textile Antennas. IEEE Trans. Antennas Propag., 59 (2011), 631642.CrossRefGoogle Scholar
[28]Van Torre, P. et al. : Indoor off-body wireless communication: static beamforming versus space-time coding. Int. J. Antennas Propag., 2012 (413683) (2012), 13 pages.Google Scholar
[29]Van Torre, P.; Vallozzi, L.; Jacobs, L.; Rogier, H.; Moeneclaey, M.; Verhaevert, J.: Characterization of measured indoor off-body MIMO channels with correlated fading, correlated shadowing and constant path loss. IEEE Trans. Wireless Commun., 11 (2012), 712721.Google Scholar