Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T13:44:27.072Z Has data issue: false hasContentIssue false

An accurate modeling technique for antennas and nonlinear RF power amplifier mixed simulation

Published online by Cambridge University Press:  27 September 2011

Georges Zakka El Nashef*
Affiliation:
XLIM – C2S2/OSA Departments UMR CNRS n°6172, University of Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France. Tel: +33 5 55457735; Fax: +33 5 55457766.
François Torrès
Affiliation:
XLIM – C2S2/OSA Departments UMR CNRS n°6172, University of Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France. Tel: +33 5 55457735; Fax: +33 5 55457766.
Sébastien Mons
Affiliation:
XLIM – C2S2/OSA Departments UMR CNRS n°6172, University of Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France. Tel: +33 5 55457735; Fax: +33 5 55457766.
Tibault Reveyrand
Affiliation:
XLIM – C2S2/OSA Departments UMR CNRS n°6172, University of Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France. Tel: +33 5 55457735; Fax: +33 5 55457766.
Edouard Ngoya
Affiliation:
XLIM – C2S2/OSA Departments UMR CNRS n°6172, University of Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France. Tel: +33 5 55457735; Fax: +33 5 55457766.
Thierry Monédière
Affiliation:
XLIM – C2S2/OSA Departments UMR CNRS n°6172, University of Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France. Tel: +33 5 55457735; Fax: +33 5 55457766.
Marc Thévenot
Affiliation:
XLIM – C2S2/OSA Departments UMR CNRS n°6172, University of Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France. Tel: +33 5 55457735; Fax: +33 5 55457766.
Raymond Quéré
Affiliation:
XLIM – C2S2/OSA Departments UMR CNRS n°6172, University of Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France. Tel: +33 5 55457735; Fax: +33 5 55457766.
*
Corresponding author: G. Zakka El Nashef Email: georges.zakka-el-nashef@xlim.fr

Abstract

The design of agile active antennas requires an efficient modeling methodology in order to quantify the impact of other components on the array radiation pattern, and especially the influence of power amplifiers (PA). Therefore, the performance prediction of PA on TX chains is of prime importance. This article describes two different approaches for active antenna applications. The first one concentrates on PA macro-modeling, which takes into account a large output load impedance mismatch with a voltage standing wave ratio up to 4:1. A PA behavioral model based on nonlinear scattering functions was developed and extracted from CW measurements. The model validity was checked by comparison with the measured data. The second one describes a novel technique for synthesizing a given radiation pattern, whereas taking into account the mutual coupling and calculated matching impedances (ZL ≠ 50 Ω) of each antenna in the array according to frequency and pointing angle.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Hommel, H.; Feldle, H.P.: Current status of airborne active phased array (AESA) radar system and future trends, in 34th European Microwave Conf., Amsterdam, 2004, 15171520.CrossRefGoogle Scholar
[2]Lee, W.C.Y.: Mutual coupling effect on maximum-ratio diversity combiners and application to mobile radio. IEEE Trans. Commun. Technol., 18 (6) (1970), 779791.CrossRefGoogle Scholar
[3]Nielsen, T.S.; Lindfors, S.: Fast predistorter adaptation to varying antenna load, in Proc. 59th IEEE Vehicular Technology Conf., 2004, VTC-Spring, Milan, May 2004, 1417.Google Scholar
[4]NEXTEC Microwave & RF, Scott Blvd, Santa Clara, USA. Website: http://www.nextec-rf.com/Google Scholar
[5]Zakka El Nashef, G. et al. : Behavioral model of solid state power amplifiers (SSPAs) for agile antennas application, in European Conf. Antennas and Propagation 2010, Barcelona, 12–16 April 2010, 14.Google Scholar
[6]Zakka El Nashef, G. et al. : Power amplifiers modeling technique for reconfigurable antenna array application, in Proc. Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC 2010) Conf., Göteborg, Sweden, 26–27 April 2010, 144147.CrossRefGoogle Scholar
[7]Zakka El Nashef, G. et al. : Second order extension of power amplifiers behavioral models for accuracy improvements, in Proc. 40th European Microwave Conf., EuMW 2010, Paris, France, September 2010, 10301033.Google Scholar
[8]Pozar, D.M.: A relation between the active input impedance and the active impedance pattern of phased array. IEEE Trans. Antennas Propag., 51 (9) (2003), 24862489.CrossRefGoogle Scholar
[9]El Sayed Ahmad, A.; Thévenot, M.; Menudier, C.; Koubeissi, M.; Arnaud, E.; Monedière, T.: Design of a coupled antenna array for mobile hyperLAN2 applications. Int. J. Microw. Wirel. Technol. (IJMWT), (2011).CrossRefGoogle Scholar
[10]El Sayed Ahmad, A.; Thévenot, M.; Koubessi, M.; Arnaud, E.; Monédière, T.: Synthesis of an array of coupled antennas, in Proc. 3rd European Conf. on Antennas and Propagation (EUCAP 2009), 23–27 March, Berlin, Germany, 3074–3076, vol. 1.Google Scholar
[11]Zakka El Nashef, G. et al. : Development of an electromagnetic macro-model for reconfigurable array application, in 4th European Conf. Antennas and Propagation (EuCAP 2010), Barcelona, Spain,12–16 April 2010, 14.Google Scholar
[12]Pozar, D.M.: The active element pattern. IEEE Trans. Antennas Propag., 42 (8) (1994), 11761178.CrossRefGoogle Scholar
[13]Mouhamadou, M.; Fadlallah, N.; Vaudon, P.; Rammal, M.: Adaptive beamforming synthesis for linear antenna array controlling only by phase with interference canceller, in LAPC 2006, Loughborough Antennas & Propagation Conf., Loughborough University, UK, 1–12 April 2006, 165168.Google Scholar
[14]Root, D.E.; Verspecht, J.; Sharrit, D.; Wood, J.; Cognata, A.: Broad-band poly-harmonic distortion (PHD) behavioral models from fast automated simulations and large-signal vectorial network measurement. IEEE Trans. Microw. Theory Tech., 53 (11) (2005), 36563664.CrossRefGoogle Scholar
[15]Soury, A.; N'Goya, E.; Nebus, J.M.: A new behavioral model taking into account nonlinear memory effects and transcient behaviors in wideband SSPAs, in IEEE MTT-S Int Microwave Symp. Digest, June 2002, 853856.Google Scholar
[16]Mazière, C.; Soury, A.; N'Goya, E.; Nebus, J.M.: A system level model of solid state amplifiers with memory based on a nonlinear feedback loop principle, in European Microwave Conf., Paris, France, 2005, 4.CrossRefGoogle Scholar
[17]Boumaiza, S.; Gauthier, J.; Ghannouchi, F.M.: Dynamic electro-thermal behavioral for RF power amplifiers, in IEEE MTT-S Int. Microwave Symp. Digest, June 2003, 351354.Google Scholar
[18]David, E.R.; Jan, V.; David, S.; John, W.; Alex, C.: Broad-Band Poly-Harmonic Distortin (PHD) Behavioral Models From Fast Automated Simulations and Large-Signal Vectorial Network Measurements. IEEE Transactions on Microwave Theory and Techniques, 53 (11), November 2005, 36563664.CrossRefGoogle Scholar
[19]Reveyrand, T.; Gasseling, T.; Barataud, D.; Mons, S.; Nébus, J.-M.: A smart load-pull method to safely reach optimal matching impedances of power transistors, in IEEE MTT-S Digest, Honolulu, Hawaii, June 2007, 14891492.CrossRefGoogle Scholar