Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-11T05:09:49.160Z Has data issue: false hasContentIssue false

An enhanced integral-equation formulation for accurate analysis of frequency-selective structures

Published online by Cambridge University Press:  16 May 2012

Guido Valerio*
Affiliation:
Institut d'Electronique et de Télécommunications de Rennes (IETR), UMR CNRS 6164, 35042 Rennes Cedex, France
Alessandro Galli
Affiliation:
Department of Information Engineering, Electronics and Telecommunications, “Sapienza” University of Rome, via Eudossiana 18, 00184 Roma, Italy
Donald R. Wilton
Affiliation:
Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005, USA
David R. Jackson
Affiliation:
Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005, USA
*
Corresponding author: G. Valerio Email: guido.valerio@univ-rennes1.fr

Abstract

In this work, a very efficient mixed-potential integral-equation formulation is implemented for the rigorous analysis of multilayered structures with arbitrarily shaped two-dimensional periodic metallic and/or dielectric inclusions. Original acceleration techniques have been developed for the computation of the components of the scalar and dyadic Green's functions, based on different types of asymptotic extractions according to the potential considered. The theoretical approach and its computational convenience have been validated through different full-wave analyses concerning both scattering problems and complex-mode dispersive behaviors in various frequency-selective structures for microwave applications.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Itoh, T., ed.: Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, Wiley, New York, 1989.Google Scholar
[2]Peterson, A.F.; Ray, S.L.; Mittra, R.: Computational Methods for Electromagnetics, IEEE Press, New York, 1998.Google Scholar
[3]Munk, B.A.: Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.CrossRefGoogle Scholar
[4]Caloz, C.; Itoh, T.: Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, New York, 2006.Google Scholar
[5]Baccarelli, P. et al. : Modal properties of layered metamaterials, in Capolino, F. (Ed.), Theory and Phenomena of Metamaterials, chapter 13, CRC Press, Boca Raton, 2009.Google Scholar
[6]Valerio, G.; Baccarelli, P.; Burghignoli, P.; Galli, A.; Rodriguez-Berral, R.; Mesa, F.: Analysis of periodic shielded microstrip lines by nonperiodic sources through the array scanning method. Radio Sci., 43 (RS1009) (2008), 15pp.CrossRefGoogle Scholar
[7]Oliner, A.A.; Jackson, D.R.: Leaky-wave antennas, in Volakis, J. L., ed., Antenna Engineering Handbook, 4th ed., chapter 11, McGraw-Hill, New York, 56, 2007.Google Scholar
[8]Michalski, K.A.; Zheng, D.: Electromagnetic scattering by sources of arbitrary shape in layered media, Part I: Theory. IEEE Trans. Antennas Propag., 38 (3) (1990), 335344.CrossRefGoogle Scholar
[9]Valerio, G.; Baccarelli, P.; Burghignoli, P.; Galli, A.: Comparative analysis of acceleration techniques for 2-D and 3-D Green's functions in periodic structures along one and two directions. IEEE Trans. Antennas Propag., 55 (6) (2007), 16301643.CrossRefGoogle Scholar
[10]Capolino, F.; Wilton, D.W.; Johnson, W.A.: Efficient computation of the 2-D Green's function for 1-D periodic structures using the Ewald method. IEEE Trans. Antennas Propag., 53 (9) (2005)29772984.CrossRefGoogle Scholar
[11]Valerio, G.; Wilton, D.R.; Jackson, D.R.; Galli, A.: Efficient computation of mixed-potential dyadic Green's functions for a 1D periodic array of line sources in layered media, in Proc. ICEAA, Turin, Italy, September 2009.CrossRefGoogle Scholar
[12]Johnson, W.A. et al. : EIGERTM: an open-source frequency-domain electromagnetics code, in Proc. Antennas and Propagation Symp., Honolulu, HI, USA, June 2007.CrossRefGoogle Scholar
[13]Ansys, “Ansoft HFSS User Guide,” 2009, http://www.ansys.com.Google Scholar
[14]Burghignoli, P.; Baccarelli, P.; Frezza, F.; Galli, A.; Lampariello, P.; Oliner, A. A.: Low-frequency dispersion features of a new complex mode for a periodic strip grating on a grounded dielectric slab”. IEEE Trans. Microw. Theory Tech., 49 (12) (2001), 21972205.CrossRefGoogle Scholar
[15]Pozar, D.M., Microwave Engineering, 3rd ed., Wiley, New York, 2004.Google Scholar
[16]Valerio, G.; Paulotto, S.; Baccarelli, P.; Burghignoli, P.; Galli, A.: Accurate Bloch analysis of 1-D periodic lines through the simulation of truncated structures. IEEE Trans. Antennas Propag., 59 (6) (2011), 21882195.CrossRefGoogle Scholar
[17]Capolino, F.; Jackson, D.R.; Wilton, D.R.; Felsen, L.B.: Comparison of methods for calculating the field excited by a dipole near a 2-D periodic material. IEEE Trans. Antennas Propag., 55 (6) (2007), 16441655.CrossRefGoogle Scholar
[18]Valerio, G.; Burghignoli, P.; Baccarelli, P.; Galli, A.: Input impedance of nonperiodic sources exciting 1-D periodic shielded microstrip structures. IEEE Trans. Microw. Theory Tech., 58 (7) (2010), 17961806.CrossRefGoogle Scholar
[19]Valerio, G.; Baccarelli, P.; Paulotto, S.; Frezza, F.; Galli, A.: Regularization of mixed-potential layered-media Green's functions for efficient interpolation procedures in planar periodic structures. IEEE Trans. Antennas Propag., 57 (1)(2009), 122134.CrossRefGoogle Scholar
[20]Francavilla, M.A.; Wilton, D.R.; Paulotto, S.; Jackson, D.R.: 3-simplex interpolation of the mixed-potential Green's functions in layered media, in Proc. 5th European Conf. Antennas and Propagation (EuCAP), Rome, Italy, April 2011.Google Scholar