Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T06:32:56.980Z Has data issue: false hasContentIssue false

Automatic-dependent surveillance–broadcast experimental deployment using system wide information management

Published online by Cambridge University Press:  03 April 2012

Juan A. Besada*
Affiliation:
GPDS-SSR, ETSI Telecomunicación, Univ. Politécnica de Madrid, Avenida Complutense 30, Madrid, 28040, Spain. Phone: +34 453 35 75.
Gonzalo de Miguel
Affiliation:
GPDS-SSR, ETSI Telecomunicación, Univ. Politécnica de Madrid, Avenida Complutense 30, Madrid, 28040, Spain. Phone: +34 453 35 75.
Ana M. Bernardos
Affiliation:
GPDS-SSR, ETSI Telecomunicación, Univ. Politécnica de Madrid, Avenida Complutense 30, Madrid, 28040, Spain. Phone: +34 453 35 75.
José R. Casar
Affiliation:
GPDS-SSR, ETSI Telecomunicación, Univ. Politécnica de Madrid, Avenida Complutense 30, Madrid, 28040, Spain. Phone: +34 453 35 75.
*
Corresponding author: J.A. Besada Email: besada@grpss.ssr.upm.es

Abstract

This paper describes an automatic-dependent surveillance–broadcast (ADS–B) implementation for air-to-air and ground-based experimental surveillance within a prototype of a fully automated air traffic management (ATM) system, under a trajectory-based-operations paradigm. The system is built using an air-inclusive implementation of system wide information management (SWIM). This work describes the relations between airborne and ground surveillance (SURGND), the prototype surveillance systems, and their algorithms. System's performance is analyzed with simulated and real data. Results show that the proposed ADS–B implementation can fulfill the most demanding surveillance accuracy requirements.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]ICAO Annex 10: Aeronautical Telecommunications. Volume IV. Surveillance Radar and Collision Avoidance Systems.Google Scholar
[2]Manual on the Universal Access Transceiver (UAT): Detailed Technical Specifications, Edition 1. Revision 3.22, March 2005. ICAO.Google Scholar
[3]Manual on detailed technical specifications for the VDL Mode 4 digital link. Draft 2.1. 25, November 2003, EUROCAE.Google Scholar
[4]Technical Verification and Validation of TIS–B using VDL Mode 4. NEAN Update Program.Google Scholar
[8]Lopez-Leones, J.; Vilaplana, M.; Gallo, E.; Navarro, F.; Querejeta, C.: The aircraft intent description language: a key enabler for air-ground synchronization in trajectory-based operations, In Digital Avionics Systems Conference, DASC'07. IEEE/AIAA 26th, Dallas, Texas, USA, 2007.Google Scholar
[9]FANS-1/A Operations Manual: Version 4.0. Effective 1. 28 September 2006.Google Scholar
[10]Bar-Shalom, Y.: Multitarget–Multisensor Tracking: Applications and Advances, Vol. II, Artech House, Massachusetts, 1992.Google Scholar
[11]Kirubarajan, T.; Bar-Shalom, Y.: Precision large scale air traffic surveillance using IMM/assignment estimators. IEEE Trans. Aerosp. Electron. Syst., 35 (1) (1999), 255266.Google Scholar
[12]García, J.; Besada, J.A.; Soto, A.; de Miguel, G.: Opportunity trajectory reconstruction techniques for evaluation of ATC systems. Int. J. Microw. Wirel. Technol., 1 (3) (2009), 231238.CrossRefGoogle Scholar
[13]Besada, J.A.; García, J.; de Miguel, G.; Berlanga, A.; Molina, J.M.; Casar, J.: Design of IMM filter for radar tracking using evolution strategies. IEEE Trans. Aerosp. Electron. Syst., 41 (3) (2005), 11091122.CrossRefGoogle Scholar