Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T17:33:38.512Z Has data issue: false hasContentIssue false

Broadband AlGaN/GaN MMIC amplifier

Published online by Cambridge University Press:  18 March 2011

Ali M. Darwish*
Affiliation:
Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA. Phone:  + 202 2615 3057. American University in Cairo, AUC Avenue, Cairo 11835, Egypt.
H. Alfred Hung
Affiliation:
Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA. Phone:  + 202 2615 3057.
Edward Viveiros
Affiliation:
Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA. Phone:  + 202 2615 3057.
Amr A. Ibrahim
Affiliation:
American University in Cairo, AUC Avenue, Cairo 11835, Egypt.
*
Corresponding author: A. M. Darwish Email: darwish@alum.mit.edu

Abstract

A broadband Monolithic Microwave Integrated Circuit (MMIC) amplifier, with 12 ± 2 dB gain across the 0.1–27 GHz band has been demonstrated using the AlGaN/GaN on SiC technology. The amplifier design employs a non-conventional, series-DC/RF-High Electron Mobility Transistor (HEMT) configuration. This configuration provides an alternative design to the conventional traveling-wave amplifier (TWA). It results in a smaller MMIC chip size, and extends amplifier gain to the low-frequency region. The amplifier MMIC utilizes four HEMT devices in series and could be biased at voltages up to 120 V.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Virdee, B.S.; Virdee, B.B.: Broadband Microwave Amplifiers, Artech House, Boston, 2004.Google Scholar
[2]Ayasli, Y.; Mozzi, R.L.; Vorhaus, J.L.; Reynolds, L.D.; Pucel, R.A.: A monolithic GSAS 1–13 GHz traveling-wave amplifier. IEEE Trans. Microw. Theory Tech., 30 (1982), 976981.CrossRefGoogle Scholar
[3]Ayasli, Y.; Reynolds, L.D.; Mozzi, R.L.; Hanes, L.K.: 2–20 GHz GaAs traveling-wave power amplifier. IEEE Trans. Microw. Theory Tech., 32 (1984), 290295.Google Scholar
[4]Oda, M.M.: A stable GaAs 6–20 GHz high gain and power TWA, in IEEE Int. Microwave Symp., Boston, 1991.Google Scholar
[5]Kudszus, S.; Shahani, A.; Pavan, S.; Shaeffer, D.K.; Tarsia, M.: A 46-GHz distributed transimpedance amplifier using SiGe bipolar technology, in IEEE Int. Microwave Symp., Philadelphia, 2003.Google Scholar
[6]Meliani, C.; Behtash, R.; Würfl, J.; Heinrich, W.; Tränkle, G.: A broadband GaN-MMIC power amplifier for L to X bands, in IEEE 2nd European Microwave Integrated Circuits Conf., Munich, 2007.Google Scholar
[7]Martin, A. et al. : Balanced AlGaN/GaN HEMT cascode cells: design method for wideband distributed amplifiers. IEEE Electron. Lett., 44 (2008), 116117.CrossRefGoogle Scholar
[8]Darwish, A.M.; Boutros, K.; Luo, B.; Huebschman, B.; Viveiros, E.; Hung, H.A.: AlGaN/GaN Ka-band MMIC 5-W amplifier. IEEE Trans. Microw. Theory Tech., 54 (2006), 44564463.Google Scholar
[9]Palmer, C.; Saunier, P.; Williams, R.: A GaAs monolithic 6- to 18-GHz medium power amplifier, IEEE Transactions on Microwave and Millimeter Wave Monolithic Circuits Symp., Digest, San Francisco, 1984.Google Scholar
[10]Ezzeddine, A.; Hung, H.A.; Huang, H.C.: High-voltage FET amplifiers for satellite and phased-array applications, in IEEE Int. Microwave Symp., St. Louis, 1985.Google Scholar
[11]Peterson, K.E. et al. : 30-V MMIC power amplifier with novel bias circuitry, in IEEE Int. Microwave Symp., Boston, 1991.Google Scholar
[12]Ezzeddine, A.K.; Huang, H.C.: The high voltage/high power FET (HiVP), in IEEE RFIC Symp. Digest, Philadelphia, 2003.Google Scholar
[13]Ezzeddine, A.K.; Huang, H.C.: Ultra-broadband GaAs HIFET MMIC PA, in IEEE Int. Microwave Symp., San Francisco, 2006.Google Scholar
[14]Wu, L.; Tao, R.; Basaran, U.; Luger, J.; Dettmann, I.; Berroth, M.: The integrated 2W high voltage/high power 0.12-um RF CMOS power amplifier, in 12th GAAS Symp., Amsterdam, 2004.Google Scholar
[15]Lei, M.; Tsai, Z.; Lin, K.; Wang, H.: Design and analysis of stacked power amplifier in series-input and series-output configuration. IEEE Trans. Microw. Theory Tech., 55 (2007), 28022812.CrossRefGoogle Scholar
[16]Farmer, T.J.; Darwish, A.; Zaghloul, M.E.: A 2.4 GHz SiGe HBT high voltage/high power amplifier. IEEE Microw. Guid. Wave Lett., 20 (2010), 286288.CrossRefGoogle Scholar
[17]Palacios, T. et al. : High-power AlGaN/GaN HEMTs for Ka-band applications. IEEE Electron Device Lett., 26 (2005), 781783.Google Scholar
[18]Darwish, A.M.; Huebschman, B.; Viveiros, E.; Hung, H.A.: Dependence of GaN HEMT mm-wave performance on temperature. IEEE Trans. Microw. Theory Tech., 57 (2009), 32053211.CrossRefGoogle Scholar
[19]Kao, M.Y.; Lee, C.; Hajji, R.; Saunier, P.; Tserng, H.: AlGaN/GaN HEMTs with PAE of 53% at 35 GHz for HPA and multi-function MMIC applications, in IEEE Int. Microwave Symp., Anaheim, 2007.Google Scholar
[20]Darwish, A.M.; Hung, H.A.; Viveiros, E.; Kao, M.Y.: Multi-octave GaN MMIC amplifier, in IEEE Int. Microwave Symp., Anaheim, 2010.Google Scholar