Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T17:38:35.848Z Has data issue: false hasContentIssue false

Compact diplexers and triplexers implemented with dual-mode cavities

Published online by Cambridge University Press:  27 October 2011

Hussein Ezzeddine*
Affiliation:
XLIM, UMR 6172, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060Limoges Cedex, France. Phone: +33616024125
Stéphane Bila
Affiliation:
XLIM, UMR 6172, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060Limoges Cedex, France. Phone: +33616024125
Serge Verdeyme
Affiliation:
XLIM, UMR 6172, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060Limoges Cedex, France. Phone: +33616024125
Fabien Seyfert
Affiliation:
INRIA, 2004 route des Lucioles, 06902 Sophia-Antipolis, France.
Damien Pacaud
Affiliation:
Thales Alenia Space, 26 Avenue Champollion, Toulouse, France.
Jérôme Puech
Affiliation:
CNES, 18 Avenue Edouard Belin, F-31401 Toulouse, France.
Laetitia Estagerie
Affiliation:
CNES, 18 Avenue Edouard Belin, F-31401 Toulouse, France.
*
Corresponding author: H. Ezzeddine Email: hussein.ezzeddine@xlim.fr

Abstract

In this paper, the design of compact diplexers and triplexers with dual-mode cavities is presented. Such devices are composed of coupled resonators without additional waveguide element, leading to a more compact architecture. Two topologies of compact diplexers are implemented and compared to a standard manifold diplexer. A hardware prototype is fabricated and measured for experimental verification. A compact triplexer is finally introduced for extending the concept to more than three ports.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Rhodes, J.D.; Levy, R.: A generalized multiplexer theory. IEEE Trans. Microw. Theory Tech., 27 (2) (1979), 99111.CrossRefGoogle Scholar
[2]Rhodes, J.D.; Levy, R.: Design of general manifold multiplexers. IEEE Trans. Microw. Theory Tech., 27 (2) (1979), 111123.CrossRefGoogle Scholar
[3]Kudsia, C.; Cameron, R.; Tang, W-C.: Innovation in microwave filters and multiplexing networks for communications satellite systems. IEEE Trans. Microw. Theory Tech., 40 (6) (1992), 11331149.CrossRefGoogle Scholar
[4]Ezzeddine, H.; Bila, S.; Verdeyme, S.; Seyfert, F.; Pacaud, D.: Coupling topologies for realizing compact microwave diplexers with dual-mode cavities, in IEEE MTT-S Int. Microwave Symp., 2010, pp. 880883.Google Scholar
[5]Ezzeddine, H. et al. : Conception et réalisation de diplexeurs compacts en cavités bimodes, In 17èmes Journées Nationales Microondes (JNM), Brest, 1820 Mai 2011.Google Scholar
[6]Macchiarella, G.; Tamiazzo, S.: Novel approach to the synthesis of microwave duplexers. IEEE Trans. Microw. Theory Tech., 54 (12) (2006), 42814290.CrossRefGoogle Scholar
[7]Macchiarella, G.; Tamiazzo, S.: Synthesis of microwave duplexers using fully canonical microstrip filters, in IEEE MTT-S Int. Microwave Symp., 2009, pp. 721724.Google Scholar
[8]Garcia-Lamperez, A.; Salazar-Palma, M.; Sarkar, T.: Compact multiplexer formed by coupled resonators with distributed coupling, in IEEE AP-S Int. Microwave Symp. Digest, 2005, pp. 8992.Google Scholar
[9]Garcia-Lamperez, A.; Salazar-Palma, M.; Sarkar, T.: Analytical synthesis of microwave multiport networks, in IEEE MTT-S Int. Microwave Symp., 2004, pp. 455458.Google Scholar
[10]Loras-Gonzalez, F.; Sobrino-Arias, S.; Hidalgo-Carpintero, I.; García-Lampérez, A.; Salazar-Palma, M.: A novel Ku-band dielectric resonator triplexer based on generalized multiplexer theory, in IEEE MTT-S Int. Microwave Symp., 2010, pp. 884887.Google Scholar
[11]Atia, A.E.; Williams, A.E.: Narrow bandpass waveguide filters. IEEE Trans. Microw. Theory Tech., MTT-20 (1972), 258265.CrossRefGoogle Scholar
[12]Bila, S. et al. : Finite-element modeling for the design optimization of microwave filters. IEEE Trans. Magnet., 40 (2) (2004), 14721475.CrossRefGoogle Scholar
[13]Seyfert, F., Bila, S.: General synthesis techniques for coupled resonator networks. IEEE Microw. Mag., 8 (5) (2007), 98104.CrossRefGoogle Scholar