Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T10:13:20.189Z Has data issue: false hasContentIssue false

Computation of intermodulation distortion in RF MEMS variable capacitor circuits using moments

Published online by Cambridge University Press:  26 January 2015

Dani A. Tannir*
Affiliation:
Department of Electrical and Computer Engineering, Lebanese American University, PO Box 36, Byblos, Lebanon. Phone: +961-9-547262
*
Corresponding author:D. Tannir Email: dani.tannir@lau.edu.lb

Abstract

This paper introduces a new technique for the efficient computation of intermodulation distortion in radio frequency circuits that contain microelectromechanical system (MEMS) variable capacitors using moments analysis. This method is applied to an extended harmonic balance formulation, which contains the nonlinear equations that describe the dynamic mechanical behavior of MEMS variable capacitors, in addition to the nonlinear electric circuit equations. As a result, the moments method becomes a general multi-domain simulation method for quantifying nonlinear intermodulation distortion, while presenting significant computational cost reduction over harmonic balance-based methods.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Girbau, D.; Otegi, N.; Pradell, L.; Lazaro, A.: Study of intermodulation in RF MEMS variable capacitors. IEEE Trans. Microw. Theory Tech., 54 (3) (2006), 11201130.Google Scholar
[2]Rebeiz, G.; Muldavin, J.B.: RF MEMS switches and switch circuits. IEEE Microw. Mag., 2 (4) (2001), 5971.Google Scholar
[3]Rebeiz, G.M.: RF MEMS Theory Design and Technology, John Wiley & Sons, Inc., Hoboken, NJ, 2003.Google Scholar
[4]Dussopt, L.; Rebeiz, G.: Intermodulation distortion and power handling in RF MEMS switches, varactors, and tunable filters. IEEE Trans. Microw. Theory Tech., 51 (4) (2003), 927930.Google Scholar
[5]Mercier, D.; Blondy, P.; Cros, D.; Guillon, P.: An electromechanical model for MEMS switches. in IEEE Int. Microwave Symp., 2001, 2123–2126.Google Scholar
[6]Gaddi, R.; Iannacci, J.; Gnudi, A.: Mixed-domain simulation of intermodulation in RF-MEMS capacitive shunt switches. in European Microwave Conf., 2003, 671–674.Google Scholar
[7]Girbau, D.; Otegi, N.; Pradell, L.; Lazaro, A.: Generation of third and higher-order intermodulation products in MEMS capacitors, and their effects. in European Microwave Conf., 2005, 593–596.Google Scholar
[8]Innocent, M.; Wambacq, P.; Donnay, S.; Tilmans, H.A.C.; Sansen, W.; Man, H.D.: An analytic Volterra-series-based model for a mems variable capacitor. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 22 (2) (2003), 124131.CrossRefGoogle Scholar
[9]Wambacq, P.; Sansen, W.: Distortion Analysis of Analog Integrated Circuits, Kluwer Academic Publishers, The Netherlands, 1998.Google Scholar
[10]Rogers, J.; Plett, C.: Radio Frequency Integrated Circuit Design, Artech House, Inc., Norwood, MA, 2003.Google Scholar
[11]Kundert, K.S.; White, J.K.; Sangiovanni-Vincentelli, A.: Steady-State Methods for Simulating Analog and Microwave Circuits, Kluwer Academic, Boston, 1990.Google Scholar
[12]Nakhla, M.S.; Vlach, J.: A piecewise harmonic-balance technique for determination of periodic response of nonlinear systems. IEEE Trans. Circuits Syst., 23 (2) (1976), 8591.Google Scholar
[13]Rizzoli, V.; Gaddi, R.; Iannacci, J.; Masotti, D.; Mastri, F.: Multitone intermodulation and RF stability analysis of MEMS switching circuits by a globally convergent harmonic-balance technique. Proc. Eur. Microw. Assoc., 1 (3) (2005), 4554.Google Scholar
[14]Rizzoli, V.; Masotti, D.; Mastri, F.; Costanzo, A.: Nonlinear distortion and instability phenomena in MEMS-reconfigurable microstrip antennas. in European Microwave Conf., 2005, 565–568.Google Scholar
[15]Veijola, T., et al. : Large-displacement modelling and simulation of micromechanical electrostatically driven resonators using the harmonic balance method. in IEEE Int. Microwave Symp., 2000, 99–102.Google Scholar
[16]Tannir, D.; Khazaka, R.: Moments based computation of intermodulation distortion in mixer circuits. in IEEE International Microwave Symposium, 2007, 9598.Google Scholar
[17]Tannir, D.; Khazaka, R.: Moments based computation of intermodulation distortion in RF circuits. IEEE Trans. Microw. Theory Tech., 55 (10) (2007), 21352146.Google Scholar
[18]Tannir, D.; Khazaka, R.: Efficient nonlinear distortion analysis of RF circuits. in Proceedings Design Automation and Test in Europe Conf., 2007, 16.Google Scholar
[19]Gad, E.; Khazaka, R.; Nakhla, M.; Griffith, R.: A circuit reduction technique for finding the steady-state solution of nonlinear circuits. IEEE Trans. Microw. Theory Tech., 48 (12) (2000), 23892396.Google Scholar
[20]Ho, C.W.; Ruehli, A.E.; Brennan, P.A.: The modified nodal approach to network analysis. IEEE Trans. Circuits Syst., 22 (6) (1975), 504509.Google Scholar
[21]Achar, R.; Nakhla, M.: Simulation of high-speed interconnects. Proc. IEEE, 89 (5) (2001), 693728.Google Scholar
[22]Khazaka, R.: Projection based techniques for the simulation of RF circuits and high speed interconnects. PhD Dissertation Thesis, Carleton University, Ottawa, ON, Canada, 2002.Google Scholar
[23]Chiprout, E.; Nakhla, M.: AsymptoticWaveform Evaluation and Moment Matching for Interconnect Analysis, Kluwer, Boston, 1993.Google Scholar
[24]Maas, S.: Nonlinear Microwave and RF Circuits, Artech House Publishers, Upper Saddle River, NJ, 2003.Google Scholar
[25]Griffith, R.; Nakhla, M.: A new high order absolutely stable explicit numerical integration algorithm for the time domain simulation of nonlinear circuits. in Proceedings of Int. Conf. on Computer-Aided Design, 1997, 504–509.Google Scholar
[26]Bao, M.; Yang, H.; Sun, Y.; French, P.: Modified Reynolds equation and analytical analysis of squeeze-film air damping of perforated structures. J. Micromech. Microeng., 13 (6) (2003), 795800.Google Scholar
[27]Tannir, D.; Khazaka, R.: Adjoint sensitivity analysis of nonlinear distortion in radio frequency circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 30 (6) (2011), 934939.Google Scholar