Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-11T08:06:11.616Z Has data issue: false hasContentIssue false

Division by current: a new approach to FET capacitance modeling

Published online by Cambridge University Press:  03 February 2011

Stephen Maas*
Affiliation:
Nonlinear Technologies, Inc., P.O. Box 7284, Long Beach, CA 90807, USA.
*
Corresponding author: S. Maas Email: s.maas@nonlintec.com

Abstract

This paper introduces a new approach to the modeling of capacitance in field-effect transistor (FET) devices, which we call division by current. It is compared with existing formulations, which we call division by capacitance and division by charge. In doing so, it is necessary to normalize the theory of nonlinear capacitances and to clarify a number of matters. These include charge conservation and determination of charge functions from capacitance measurements, which are often misstated in the literature. We find the division by current formulation to be practical and to have significant advantages in the generation of FET models and in circuit simulation.

Type
Research Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Root, D.E.: Nonlinear charge modeling for FET large-signal simulation and its importance for IP3 and ACPR in communication circuits, in Proc. 44th IEEE 2001 Midwest Symp. Circuits and Systems, vol. 2, 2001, 768.Google Scholar
[2]Statz, H.; Newman, P.; Smith, I.; Pucel, R.; Haus, H.: GaAs FET device and circuit simulation in SPICE. IEEE Trans. Electron Devices, ED-34 (2) (1987), 160.CrossRefGoogle Scholar
[3]Divekar, D.: Comments on GaAs FET device and circuit simulation in SPICE. IEEE Trans. Electron Devices, ED-34 (12) (1987), 2564.CrossRefGoogle Scholar
[4]Statz, H.; Newman, P.; Smith, I.; Pucel, R.; Haus, H.: On charge nonconservation in FET's. IEEE Trans. Electron Devices, ED-34 (12) (1987), 2565.Google Scholar
[5]Cheng, Y.; Hu, C.: MOSFET Modeling and BSIM3 User's Guide, Kluwer, Boston, 1999.Google Scholar
[6]Yang, P.; Epler, B.; Chatterjee, P.: An investigation of the charge conservation problem for MOSFET circuit simulation. IEEE J. Solid-State Circuits, SC-18 (1) (1983), 128.CrossRefGoogle Scholar
[7]Snider, A.D.: Charge conservation and the transcapacitance element. IEEE Trans. Educ., 38 (1995), 376.CrossRefGoogle Scholar
[8]Struble, W. et al. : A new small signal MESFET and HEMT model compatible with large signal modeling, in IEEE MTS 1994 Int. Microwave Symp. Digest, 1994, 1567.Google Scholar
[9]Scheinberg, N.; Chisholm, E.: A capacitance model for GaAs MESFET's. IEEE J. Solid-State Circuits, 26 (10) (1991), 1467.CrossRefGoogle Scholar
[10]Parker, A.E.; Skellern, D.J.: A realistic large signal MESFET model for spice. IEEE Trans. Microw. Theory Tech., 45 (9) (1997), 1463.CrossRefGoogle Scholar
[11]Wren, M.; Brazil, T.J.: Enhanced prediction of pHEMT nonlinear distortion using a novel charge conservative model, in IEEE MTS 2004 Int. Microwave Symp. Digest, 2004, 31.Google Scholar
[12]Hallgren, R.B.; Litzenberg, P.H.: TOM3 capacitance model: linking large- and small-signal MESFET models in SPICE. IEEE Trans. Microwave Theory Tech., 47 (5) (1999), 556.CrossRefGoogle Scholar
[13]Rorsman, N.; Garcia, M.; Karlsson, C.; Zirath, H.: Accurate small-signal modeling of HFETs for millimeter-wave application. IEEE Trans. Microwave Theory Tech., 44 (4) (1996), 432.CrossRefGoogle Scholar
[14]Dambrine, G.; Cappy, A.; Heliodore, F.; Playez, E.: A new method for determining the FET small-signal equivalent circuit. IEEE Trans. Microwave Theory Tech., 36 (1988), 1151.CrossRefGoogle Scholar
[15]Parker, A.E.; Mahon, S.J.: Robust extraction of access elements for broadband small-signal FET models, in IEEE MTS 2007 Int. Microwave Symp. Digest, 2007, 783.CrossRefGoogle Scholar
[16]Berroth, M.; Bosch, R.: Broad-band determination of the FET small-signal equivalent circuit. IEEE Trans. Microwave Theory Tech., 38 (1990), 891.CrossRefGoogle Scholar
[17]Divekar, D.A.: FET Modeling for Circuit Simulation, Kluwer, Boston, 1988.CrossRefGoogle Scholar
[18]Aaen, P.; Bridges, D.; Pla, J.A.; Wood, J.: Modeling and Characterization of RF and Microwave Power FETS, Cambridge University Press, Cambridge, UK, 2007.CrossRefGoogle Scholar