Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T19:50:08.615Z Has data issue: false hasContentIssue false

Efficient location strategy for airport surveillance using Mode-S multilateration systems

Published online by Cambridge University Press:  22 February 2012

Ivan A. Mantilla-Gaviria*
Affiliation:
ITACA Research Institute, Universidad Politécnica de Valencia, Camino de Vera S/N, 46022 Valencia, Spain.
Mauro Leonardi
Affiliation:
DISP, “Tor Vergata” University, via del Politecnico 1, 00131 Rome, Italy.
Gaspare Galati
Affiliation:
DISP, “Tor Vergata” University, via del Politecnico 1, 00131 Rome, Italy.
Juan V. Balbastre-Tejedor
Affiliation:
ITACA Research Institute, Universidad Politécnica de Valencia, Camino de Vera S/N, 46022 Valencia, Spain.
Elías de Los Reyes Davó
Affiliation:
ITACA Research Institute, Universidad Politécnica de Valencia, Camino de Vera S/N, 46022 Valencia, Spain.
*
Corresponding author: I. A. Mantilla-Gaviria Email: iamantillagaviria@gmail.com

Abstract

In this paper, the use of regularization methods to solve the location problem in multilateration systems, using Mode-S signals, is studied, evaluated, and developed. The Tikhonov method has been implemented as a first application to solve the classical system of hyperbolic equations in multilateration systems. Some simulations are obtained and the results are compared with those obtained by the well-established Taylor linearization and with the Cramér–Rao lower bound analysis. Significant improvements, for the accuracy, convergence, and the probability of location, are found for the application of the Tikhonov method.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]The European Organisation for the Safety of Air Navigation. The ATM surveillance strategy for ECAC, in European Air Traffic Management Programme, Eurocontrol, 2008.Google Scholar
[2]The European Organisation for Civil Aviation Equipment. Ed-117, mops for mode s multilateration systems for use in advanced surface movement guidance and control systems (a-smgcs), in EUROCAE (Ed.), EUROCAE, November 2003.Google Scholar
[3]Golub, G.H.; Loan, C.F.V.: Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996.Google Scholar
[4]Hadamard, J.: Lectures on Cauchy's Problem in Linear Partial Differential Equations, Yale University Press, New Haven, 1923.Google Scholar
[5]Leonardi, M.; Mathias, A.; Galati, G.: Two efficient localization algorithms for multilateration. Int. J. Microw. Wirel. Technol., 1 (2009), 223229.CrossRefGoogle Scholar
[6]Galati, G.; Leonardi, M.; Tosti, M.: Multilateration (local and wide area) as a distributed sensor system: lower bounds of accuracy, in European Radar Conf., EuRAD, Amsterdam, 30–31 October 2008.Google Scholar
[7]Bertero, M.; Boccacci, P.; Brakenhoff, G.J.; Malfanti, F.; Voort, H.T.M.v.d.: Three-dimensional image restoration and super-resolution in flourescence confocal microscopy. J. Microsc., 157 (1990), 320.CrossRefGoogle Scholar
[8]Harrington, R.F.: Field Computations by Moment Methods, Macmillan, New York, 1993.CrossRefGoogle Scholar
[9]Menke, W.: Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, San Diego, 1989.Google Scholar
[10]Foy, W.H.: Position-location solution by Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst., AES-12 (1976), 187194.CrossRefGoogle Scholar
[11]Torrieri, D.J.: Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst., AES-20 (1984), 183198.CrossRefGoogle Scholar
[12]Perl, E.; Gerry, M.J.: Target localization using TDOA distributed antenna, US 2005/0035897 A1, USA, 17 February 2005.Google Scholar
[13]Schau, H.C.; Robinson, A.Z.: Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Trans. Acoust. Speech Signal Process., ASSP-35 (1987), 12231225.CrossRefGoogle Scholar
[14]Ho, K.C.; Chan, Y.T.: Solution and performance analysis of geolocation by tdoa. IEEE Trans. Aerosp. Electron. Syst., 29 (1993), 13111322.CrossRefGoogle Scholar
[15]Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Sovieth Math. Dokl., 4 (1963), 10351038.Google Scholar
[16]Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. ACM, 9 (1962), 8497.CrossRefGoogle Scholar
[17]Morozov, V.A.: On the solution of functional equations by method of regularization. Sovieth Math. Dokl., 7 (1966), 414417.Google Scholar
[18]Gfrerer, H.: An a posteriori parameter choice for ordinary and iterated tikhonov regularization of ill-posed problems leading to optimal convergences rates. Math. Comp., 49 (1987), 507522.CrossRefGoogle Scholar
[19]Hanke, M.; Raus, T.: A general heuristic for choosing the regularization parameter in ill-posed problems. SIAM J. Sci. Comput., 17 (1996), 956972.CrossRefGoogle Scholar
[20]Golub, G.H.; Heath, M.T.; Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21 (1979), 215223.CrossRefGoogle Scholar