Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T18:08:27.651Z Has data issue: false hasContentIssue false

Factors reducing the cut-off frequency of resonant tunneling diodes

Published online by Cambridge University Press:  12 December 2012

Nikolay Alkeev*
Affiliation:
FIRE RAS, Fryazino, Russian Federation. Phone: +7 903 208 04 63
Stanislav Averin
Affiliation:
FIRE RAS, Fryazino, Russian Federation. Phone: +7 903 208 04 63
Aleksey Dorofeev
Affiliation:
FSUE “S&PE” Pulsar, Moscow, Russian Federation
Nadezda Gladysheva
Affiliation:
FSUE “S&PE” Pulsar, Moscow, Russian Federation
*
Corresponding author: Nikolay Alkeev Email: nikolayalkeev@mail.ru

Abstract

The impedance dependence of resonant tunneling diodes (RTDs) based on the GaAs/AlAs heterosystem is investigated in the range of 0.1–40 GHz. The analysis shows that the impedance of about 90% of unbiased RTDs is well described by an equivalent circuit (EC) consisting of parallel-connected resistance and capacitance and an additional resistance connected in series with this parallel combination. When a bias voltage is applied to these RTDs, one needs a “quantum” inductance LQ to describe the impedance behavior. We find the value of LQ and calculate the delay time of electrons in the quantum well (QW) of an RTD. The impedance of the rest 10% of the RTDs is well described by an EC that takes into account the recharge of localized electron states at the heterointerfaces of the active layers. Expressions for the cut-off frequencies that take into account the delay of electrons in the QW and the localized electron states at the heterointerfaces are derived. It is shown that the delay of electrons in the QW and localized electron states at the heterointerfaces may significantly reduce the cut-off frequency of RTDs.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Scott, J.S.; Kaminski, J.P.; Allen, S.J.; Chow, D.; Lui, M.; Liu, T.Y.: Terahertz response of an InGaAs/AlAs resonant tunneling diode. Semicond. Sci. Technol., 9 (1994), 530532.CrossRefGoogle Scholar
[2]Suzuki, S.; Asada, M.; Teranishi, A.; Sugiyama, H.; Yokoyama, H.: Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature. Appl. Phys. Lett., 97 (2010), 242102-1242102-3.Google Scholar
[3]Smith, P.M.; Conn, D.R.: The limits of resonant tunneling diode subharmonic mixer performance. J. Appl. Phys., 66 (1989), 14541458.Google Scholar
[4]Rozanov, B.A.; Rozanov, S.B.: Priemniki Millimetrovykh Voln (Millimeter Wave Receivers), Radio i Svyaz’, Moscow, 1989.Google Scholar
[5]Alkeev, N.V.; Averin, S.V.; Dorofeev, A.A.; Gladysheva, N.B.; Torgashin, M.Yu.: GaAs/AlAs resonant-tunneling diode for subharmonic mixers Russian microelectronics, 53 (2010), 331339.Google Scholar
[6]Sze, S.M.; Ng Kwok, K.: Physics of Semiconductor Devices. Wiley-Interscience, New Jersey, 2007.Google Scholar
[7]Brown, E.R.; Parker, C.D.; Solner, T.C.L.G.: Effect of quasibond-state lifetime on the oscillation power of resonant tunneling diodes. Appl. Phys. Lett., 54 (1989), 934936.Google Scholar
[8]Gusyatiner, M.S.; Gorbachev, A.I.: Poluprovodnikovye Sverkhvysokochastotnye Diody (Microwave Semiconductor Diodes). Radio i Svyaz’, Moscow, 1983.Google Scholar
[9]Feiginov, M.N.: Displacement current and the real part of high-frequency conductance of resonant-tunneling diode. Appl. Phys. Lett., 78 (2001), 33013303.Google Scholar
[10]Sheard, F.W.; Toombs, G.: Space-charge effects and ac response of resonant tunneling double-barrier diodes. Solid-State Electron., 32 (1989), 14431447.Google Scholar
[11]Wei, T.; Stapleton, S.; Berolo, O.: Capacitance and hysteresis study of AlAs/GaAs resonant tunneling diode with asymmetric spacer layers. J. Appl. Phys., 77 (1995), 40714076.Google Scholar
[12]Mattia, J.P.; McWhorter, A.L.; Aggarwal, R.J.; Rana, F.; Brown, E.R.; Maki, P.: Comparison of a rate-equation model with experiment for the resonant tunneling diode in the scattering dominated regime. J. Appl. Phys., 84 (1998), 11401148.CrossRefGoogle Scholar
[13]Luryi, S.: Frequency limit of double-barrier resonant-tunneling oscillators. Appl. Phys. Lett., 47 (1985), 490492.Google Scholar
[14]Tsuchiya, M.; Matsusue, T.; Sakaki, H.: Tunneling escape rate of electrons from quantum well in double-barrier heterostructures. Phys. Rev. Lett., 59 (1987), 23562359.Google Scholar
[15]Jackson, M.K.; Johnson, M.B.; Chow, D.H.; McGill, T.C.; Nieh, C.W.: Electron tunneling time measured by photoluminescence excitation correlation spectroscopy. Appl. Phys. Lett., 54 (1989), 552554.Google Scholar
[16]Eaves, L. et al. : Electrical and spectroscopic studies of space-charge buildup, energy relaxation and magnetically enhanced bistability in resonant-tunneling structures. Solid-State Electron., 32 (1989), 11011108.Google Scholar
[17]Feiginov, M.N.; Chowdhury, D.R.: Operation of resonant-tunneling diodes beyond resonant-state-lifetime limit applied. Phys. Lett., 91 (2007), 203501-1203501-3.Google Scholar
[18]Tager, A.S.: Razmernye kvantovye effekty v polyprovodnikovyh strukturah i perspektiva ih primeneniya v electronike SVCh. Ch. 1. Fizicheskie osnovy. Elektronnaya Tekhnika. Ser. 1. Elektronika. SVCh, No. 9 (1987), 2134.Google Scholar
[19]Alkeev, N.V.; Lyubchenko, V.E.; Velling, P.; Khorenko, E.; Prost, W.; Tegude, F.J.: Equivalent circuit of a resonant tunnel InGaAs/InAlAs diode operating at millimetric waves. J. Commun. Technol. Electron., 49 (2004), 833838.Google Scholar
[20]Blank, T.V.; Goldberg, Yu.A.: Mechanisms of current flow in metal–semiconductor ohmic contacts. Semiconductors, 41 (2007), 12631292.Google Scholar
[21]Krishnamurthy, S.A.; Sher, A.; Chen, A.B.: Materials choice for ballistic transport: Group velocities and mean free paths calculated from realistic band structures. Appl. Phys. Lett., 52 (1988), 468470.Google Scholar
[22]Brown, E.R.; Goodhue, W.D.; Sollner, T.C.L.G.: Fundamental oscillations up to 200 GHz in resonant tunneling diodes and new estimates of their maximum oscillation frequency from stationary-state tunneling theory. J. Appl. Phys., 64 (1988), 15191529.CrossRefGoogle Scholar
[23]Alkeev, N.V. et al. : Sequential mechanism of electron transport in the resonant tunneling diode with thick barriers. Semiconductors, 41 (2007), 227231.Google Scholar
[24]Jo, J.; Li, H.S.; Chen, Y.W.; Wang, K.L.: Observation of a large capacitive current in a double barrier resonant tunneling diode at resonance. Appl. Phys. Lett., 64 (1994), 22762278.Google Scholar