Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T15:47:03.968Z Has data issue: false hasContentIssue false

Label-free RF biosensors for human cell dielectric spectroscopy

Published online by Cambridge University Press:  19 January 2010

Claire Dalmay*
Affiliation:
XLIM Research Institute, Centre National de la Recherche Scientifique (CNRS), University of Limoges, 87060 Limoges Cedex, France.
Arnaud Pothier
Affiliation:
XLIM Research Institute, Centre National de la Recherche Scientifique (CNRS), University of Limoges, 87060 Limoges Cedex, France.
Mathilde Cheray
Affiliation:
Laboratory of “Homeostasie cellulaire et Pathologies”, University of Limoges, 87060 Limoges Cedex, France.
Fabrice Lalloue
Affiliation:
Laboratory of “Homeostasie cellulaire et Pathologies”, University of Limoges, 87060 Limoges Cedex, France.
Marie-Odile Jauberteau
Affiliation:
Laboratory of “Homeostasie cellulaire et Pathologies”, University of Limoges, 87060 Limoges Cedex, France.
Pierre Blondy
Affiliation:
XLIM Research Institute, Centre National de la Recherche Scientifique (CNRS), University of Limoges, 87060 Limoges Cedex, France.
*
Corresponding author: C. Dalmay Email: claire.dalmay@xlim.fr

Abstract

This paper presents an original biosensor chip allowing determination of intrinsic relative permittivity of biological cells at microwave frequencies. This sensor permits non-invasive cell identification and discrimination using an RF signal to probe intracellular medium of biological samples. Indeed, these sensors use an RF planar resonator that allows detection capabilities on less than 10 cells, thanks to the microscopic size of its sensitive area. Especially, measurements between 15 and 35 GHz show the ability label-free biosensors to differentiate two human cell types using their own electromagnetic characteristics. The real part of permittivity of cells changes from 20 to 48 for the nervous system cell types studied. The proposed biodetection method is detailed and we show how the accuracy and the repeatability of measurements have been improved to reach reproducible measurements.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bashir, R.: BioMEMS: state of the art in detection, opportunities and prospects. Adv. Drug Deliv. Rev., 56 (2004), 15651586.CrossRefGoogle Scholar
[2]Moerner, W.E.; Orrit, M.: Illuminating single molecules in condensed matter. Science, 283 (2001), 16701676.CrossRefGoogle Scholar
[3]Campbell, G.A.; Mutharasam, R.: Near real-time detection of Cryptosporidium parvum oocyst by IgM-functionalized piezoelectric-excited millimeter-sized cantilever biosensor. Biosens. Bioelectron., 23 (2007), 10391045.CrossRefGoogle ScholarPubMed
[4]Kim, Y.I. et al. : Biosensors for label free detection based on RF and MEMS technology. Sens. Actuators, (2006), 592599.CrossRefGoogle Scholar
[5]Kim, Y.I., Park, Y., Baik, H.K.: Development of LC resonator for label-free biomolecule detection. Sens. Actuators A: Phys., (2007).Google Scholar
[6]Stuchly, M.A.; Kraszewski, A.; Stuchly, S.S.; Smith, A.M.: Dielectric properties of animal tissues in vivo at radio and microwave frequencies: comparison between species. Phys. Med. Biol., 27 (1982), 927936.CrossRefGoogle ScholarPubMed
[7]Blad, B.; Baldetorp, B.: Impedance spectra of tumour tissue in comparison with normal tissue; a possible clinical application for electrical impedance tomography. Physiol. Meas., 17 (1996), A 105A 115.CrossRefGoogle ScholarPubMed
[8]Vander Vorst, A.; Rosen, A.; Kotsuka, Y.: RF/Microwave Interaction with Biological Tissues, IEEE Press, ISBN-10-13, 2006.Google Scholar
[9]Gabriel, S.; Lau, S.W.; Gabriel, C.: The dielectric properties of biological tissues : II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol., 41 (1996), 22512269.CrossRefGoogle Scholar
[10]Burdette, E.C.; Cain, F.L.; Seals, J.: In vivo probe measurement technique for determining dielectric properties at VHF through microwave frequencies. IEEE Trans. Microwave Theory Tech., MTr-28 (4) (1980).CrossRefGoogle Scholar
[11]Tofighi, M.R.; Daryoush, A.S.: Study of the activity of neurological cell solutions using complex permittivity measurement, In IEEE MTT-S Int. Microwave Symp. Digest, 2002.Google Scholar
[12]Song, C.; Wang, P.: A radio frequency device for measurement of minute dielectric property changes in microfluidic channels. Appl. Phys. Lett., 94 (2009).CrossRefGoogle Scholar
[13]Richards Grayson, A.C. et al. : A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE, 92 (1) (2004), 621.CrossRefGoogle Scholar
[14]Cheung, K.C.; Renaud, P.: BioMEMS for medicine: on-chip cell characterization and implantable microelectrodes. Solid-State Electron., 50 (2006), 551557.CrossRefGoogle Scholar
[15]Treizebré, A.; Akalin, T.; Bocquet, B.: Planar excitation of Goubau transmission line for THz BioMEMS. IEEE Microwave Wirel. Compon.. Lett., 15 (12) (2005), 886888.CrossRefGoogle Scholar
[16]Denef, N. et al. : RF detection of DNA based on CMOS inductive and capacitive sensors, in EUMW Conf. Digest, September 2004, 669672.Google Scholar
[17]Dalmay, C.; Pothier, A.; Blondy, P.; Lalloue, F.; Jauberteau, M-O.: Label free biosensor for human cell characterization using radio and microwave frequencies, in IEEE MTT-S Int. Microwave Symp. Digest, 2008.CrossRefGoogle Scholar
[18]Dalmay, C.; Pothier, A.; Blondy, P.; Cheray, M.; Lalloué, F.; Jauberteau, M-O.: RF Biosensor based on microwave filter for biological cell characterisation, in 39th European Microwave Conf., EuMC03-1, Roma, Italy, October 2009.CrossRefGoogle Scholar