Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T21:12:38.829Z Has data issue: false hasContentIssue false

Millimeter-Wave Fresnel Zone Plate Lens with new technological process

Published online by Cambridge University Press:  30 August 2016

Antoine Jouade*
Affiliation:
IETR – UMR CNRS 6164, University of Rennes 1, Campus de Beaulieu, Bât 11D, 35042 Rennes Cedex, France. Phone: +33 2 23 23 72 21
Jonathan Bor
Affiliation:
IETR – UMR CNRS 6164, University of Rennes 1, Campus de Beaulieu, Bât 11D, 35042 Rennes Cedex, France. Phone: +33 2 23 23 72 21
Mohamed Himdi
Affiliation:
IETR – UMR CNRS 6164, University of Rennes 1, Campus de Beaulieu, Bât 11D, 35042 Rennes Cedex, France. Phone: +33 2 23 23 72 21
Olivier Lafond
Affiliation:
IETR – UMR CNRS 6164, University of Rennes 1, Campus de Beaulieu, Bât 11D, 35042 Rennes Cedex, France. Phone: +33 2 23 23 72 21
*
Corresponding author: A. Jouadé Email: antoine.jouade@univ-rennes1.fr

Abstract

Fresnel Zone Plate lens (FZPL) antennas working in the V and W band are reported in this paper with half and quarter phase correction respectively. A low cost and straightforward technological process is used to manufacture the dielectric lenses using only one foam material where the dielectric constant is controlled. Simulation and measurement results are in good agreement that confirms the viability of such a process to fabricate inhomogeneous structures. Good loss efficiency of 73 and 55% are obtained at 60 and 85 GHz respectively with the two different FZPL designs.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lightpointe Wireless: Airbeam 60 GHz series.Google Scholar
[2] Hasch, J. et al. : Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Microw. Theory Tech., 60 (2012).CrossRefGoogle Scholar
[3] Rida, A.; Tentzeris, M.; Nikolaou, S.: Design of Low Cost Microstrip Antenna Arrays for mm-Wave Applications. ASP/URSI, 2011.CrossRefGoogle Scholar
[4] Menzel, W.; Pilz, D.; Al-Tikriti, M.: Millimeter-wave folded reflector antennas with high gain, low loss and low profile. IEEE Antennas Propag. Mag., 44 (3) (2002).CrossRefGoogle Scholar
[5] Black, D.N.; Wiltse, J.C.: Millimeter-wave characteristics of phase-correcting Fresnel zone plates. IEEE Trans. Microw. Tech., 35 (12) (1987), 11221128.CrossRefGoogle Scholar
[6] Hristov, H.D.; Herben, M.H.A.J.: Millimeter-wave fresnel-zone plate lens and antenna. IEEE Trans. Microw. Theory Tech., 43 (12) (1995).CrossRefGoogle Scholar
[7] Nguyen, B.D.; Migliaccio, C.; Pichot, C.: 94 GHz Zonal rings reflector for Helicopter collision Avoidance, GeMiC, 2005.CrossRefGoogle Scholar
[8] Hristov, H.D.; Rodriguez, J. M.; Grote, W.: The grooved-dielectric fresnel zone plate: an effective terahertz lens and antenna. Microw. Opt. Technol. Lett., 54 (6) (2012), 13431348.CrossRefGoogle Scholar
[9] Cailloce, Y.: Antennes actives et réseaux d'antennes en millimétrique, Thèse de l'Université de Rennes 1, 1995.Google Scholar
[10] Bor, J.; Lafond, O.; Merlet, H.; Le Bars, P.; Himdi, M.: Technological process to control the foam dielectric constant application to microwave components and antennas. IEEE Trans. Compon. Packaging Manuf. Technol., 4 (5) (2014).Google Scholar
[11](2011, Jul.). Airex PXc Data Sheet [Online]. Available: http://www.corematerials.3acomposites.com/airex-pxc.html?&.Google Scholar
[12] Bor, J.; Lafond, O.; Merlet, H.; Le Bars, P.; Himdi, M.: Foam based Luneburg Lens antenna at 60 GHz. Prog. Electromag. Res. Lett., 44 (2014), 17.CrossRefGoogle Scholar
[13] Petosa, A.; Ittipiboon, A.: Design and performance of a perforated dielectric Fresnel Lens. IEE Proc. Microw. Antennas Propag., 150 (5) (2003).CrossRefGoogle Scholar