Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T12:52:25.570Z Has data issue: false hasContentIssue false

Miniaturized curved slotted patch antenna over a fractalized EBG ground plane

Published online by Cambridge University Press:  10 February 2016

Saurabh Kumar*
Affiliation:
Discipline of Electronics & Communication Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India. Phone: +91 9407286763
Dinesh Kumar Vishwakarma
Affiliation:
Discipline of Electronics & Communication Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India. Phone: +91 9407286763
*
Corresponding author: S. Kumar Email: saurabh_verma393@yahoo.com

Abstract

In this paper, a miniaturized coaxial feed curved-slotted microstrip patch antenna over a fractalized uniplanar compact electromagnetic bandgap (F-UC-EBG) ground plane is proposed and investigated. Compact size is achieved by cutting the curved slots along the orthogonal directions of the patch radiator. The curved-slotted microstrip patch antenna is 38.30% miniaturized as compared with the conventional microstrip patch antenna resonating at 2.38 GHz. Furthermore, the ordinary ground plane of the curved slotted patch antenna is replaced by the F-UC-EBG ground plane. Due to the slow wave phenomenon created in the F-UC-EBG structure and the better impedance matching at the lower frequency further miniaturization and improved performance are obtained. The proposed antenna shows 74.76% miniaturization as compared with the conventional microstrip patch antenna resonating at 1.57 GHz and has 2.61% 10-dB fractional bandwidth, 1.49 dB gain, and 81.59% radiation efficiency. The proposed antenna is fabricated on a low-cost FR4 substrate having an overall volume of 0.184λ0 × 0.184λ0 × 0.0236λ0 at 1.57 GHz GPS band. The measured and simulated results are in good agreement and predicting appropriateness of the antenna in portable and handheld communication systems for GPS applications.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Balanis, C.A.: Modern Antenna Handbook, Wiley & Sons, Hoboken, NJ, 2008.CrossRefGoogle Scholar
[2] Chen, W.S.; Wu, C.K.; Wong, K.L.: Compact circularly polarized microstrip antenna with bent slots. Electron. Lett., 34 (1998), 12781279.Google Scholar
[3] Nguyen, H.T.; Noghanian, S.; Shafai, L.: Microstrip patch miniaturization by slots loading. IEEE Ant. and Prop. Soc. Int. Symp., Washington, DC, 2005.Google Scholar
[4] Chen, W.S.; Wu, C.K.; Wong, K.L.: Novel compact circularly polarized square microstrip antenna. IEEE Trans. Antenna Propag., 49 (2001), 340342.Google Scholar
[5] Chen, S.Y.; Chou, H.T.; Chiu, Y.L.: A Size-Reduced Microstrip Antenna for the Applications of GPS Signal Reception. IEEE Ant. and Prop. Soc. Int. Symp., Honolulu, HI, 2007.Google Scholar
[6] Orazi, H.; Soleimani, H.: Miniaturisation of the triangular patch antenna by the novel dual-reverse-arrow fractal. IET Microw. Antennas Propag., 9 (2014), 627633.CrossRefGoogle Scholar
[7] Kumar, S.; Vishwakarma, D.K.: Miniaturized bent slotted patch antenna over a reactive impedance surface substrate. Int. J. Microw. Wireless Technol., (2015). 16.Google Scholar
[8] Dong, Y.; Toyao, H.; Itoh, T.: Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators. IEEE Trans. Antenna Propag., 60 (2012), 772785.CrossRefGoogle Scholar
[9] Xu, H.X.; Wang, G.M.; Liang, J.G.; Qi, M.Q.; Gao, X.: Compact circularly polarized antennas combining meta-surfaces and strong space-filling meta-resonators. IEEE Trans. Antenna Propag., 61 (2013), 34423450.Google Scholar
[10] Dong, Y.; Toyao, H.; Itoh, T.: Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Trans. Antenna Propag., 59 (2011), 43294333.CrossRefGoogle Scholar
[11] Cai, T.; Wang, G.; Shi, J.; Zhang, X.: Low-profile compact circularly-polarized antenna based on fractal metasurface and fractal resonator. IEEE Antennas Wireless Proprag. Lett., 14 (2015), 10721076.Google Scholar
[12] Zhu, H.L.; Cheung, S.W.; Yuk, T.I.: Miniaturization of patch antenna using metasurface. Micro. Opt. Technol. Lett., 57 (2015), 20502056.CrossRefGoogle Scholar
[13] Farzami, F.; Forooraghi, K.; Norooziarab, M.: Miniaturization of a microstrip antenna using a compact and thin magneto-dielectric substrate. IEEE Antennas Wireless Propag. Lett., 10 (2011), 15401542.Google Scholar
[14] Cai, T.; Wang, G.M.; Zhang, X.F.; Zong, B.F.; Wang, Y.W.; Xu, H.X.: Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials. IEEE Trans. Antenna Propag., 63 (2015), 23062311.Google Scholar
[15] Suntives, A.; Abhari, R.: Miniaturization and isolation improvement of a multiple-patch antenna system using electromagnetic bandgap structures. Micro. Opt. Technol. Lett., 55 (2013), 16091612.CrossRefGoogle Scholar
[16] Yang, F.R.; Ma, K.P.; Qian, Y.; Itoh, T.: A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits. IEEE Trans. Microw. Theory Tech., 47 (1999), 15091514.Google Scholar
[17] Chang, C.; Qian, Y.; Itoh, T.: Analysis and applications of uniplanar compact photonic bandgap structures. Prog. Elec. Res., 41 (2003), 211235.Google Scholar
[18] Kim, J.H.; Kim, I.K.; Yook, J.G.; Park, H.K.: A slow-wave structure with Koch fractal slot loops. Micro. Opt. Technol. Lett., 34 (2002), 8788.CrossRefGoogle Scholar
[19] Eldek, A.A.: A miniaturized patch antenna at 2.4 GHz using uni-planar compact photonic bandgap structure. Micro. Opt. Technol. Lett., 50 (2008), 13601363.CrossRefGoogle Scholar
[20] Egels, M.; Deleruyelle, T.; Pannier, P.; Bergere, E.: Low-cost surface reduction technique for RFID reader antennas. Micro. Opt. Technol. Lett., 52 (2010), 14691471.Google Scholar
[21] He, W.; Jin, R.; Geng, J.: Low radar cross-section and high performances of microstrip antenna using fractal uniplanar compact electromagnetic bandgap ground. IET Micro. Antennas. Propag., 1 (5) (2007), 986991.Google Scholar
[22] Ling, J.; Gong, S.-X.; Lu, B.; Yuan, H.-W.; Wang, W.-T.; Liu, S.: A microstrip printed dipole antenna with UC-EBG ground for RCS reduction. J. Elect. Waves Appl., 23 (2009), 607616.CrossRefGoogle Scholar
[23] Liu, J.; Yin, W.Y.; He, S.: A new defected ground structure and its application for miniaturized switchable antenna. Prog. Electromagn. Res., 107 (2010), 115128.CrossRefGoogle Scholar
[24] Pflaum, S.; Thuc, P.L.; Kossiavas, G.; Staraj, R.: Performance enhancement of a circularly polarized patch antenna for radio frequency identification readers using an electromagnetic bandgap ground plane. Micro. Opt. Techol. Lett., 55 (2013), 15991602.CrossRefGoogle Scholar
[25] Elsheakh, D.M.; Abdallah, E.A.: Compact multiband printed-IFA on electromagnetic band-gap structures ground plane. Micro. Opt. Technol. Lett., 55 (2013), 16701676.CrossRefGoogle Scholar