Hostname: page-component-6bb9c88b65-2jdt9 Total loading time: 0 Render date: 2025-07-23T22:20:40.597Z Has data issue: false hasContentIssue false

Modified design of sub-reflector with dielectric cylindrical keeper to enhance gain in axially displaced ellipse reflector with dual polarization

Published online by Cambridge University Press:  16 July 2025

AmirHossein Haghparast
Affiliation:
Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
Pejman Rezaei*
Affiliation:
Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
Ali Zilouchian
Affiliation:
Department of Electrical and Computer Engineering, Florida Atlantic University, Boca Raton, FL, USA
*
Corresponding author: Pejman Rezaei; Email: prezaei@semnan.ac.ir

Abstract

The study introduces a novel dual-reflector antenna featuring a modified sub-reflector design aimed at improving aperture efficiency. A cylindrical-shaped keeper is introduced to enhance the performance of the sub-reflector. The dual-reflector configuration comprises a main parabolic reflector and a modified sub-reflector, with diameters of 16.5 λ and 2.2 λ, respectively, operating at 5.5 GHz. The antenna demonstrates a bandwidth (BW) of approximately 25.4% (4800–6200 MHz). Experimental measurements indicate favorable characteristics, including low cross-polarization levels (<−25 dB), minimal back lobe levels (F/B > 30 dB), high isolation between ports (>38 dB), and VSWRs less than 1.5:1 for both port1 and port2. The antenna exhibits an efficiency of around 58% and achieves a measured peak gain of approximately 32 dBi within the operating BW.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press in association with The European Microwave Association.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Kishk, AA and Shafai, L (2003) Small reflector antenna with low sidelobes. IEEE Transactions on Antennas and Propagation 51, 29072912. doi: 10.1109/TAP.2003.816329.CrossRefGoogle Scholar
Olver, AD, Clarricoats, PJB, Kishk, AA, and Shafai, L (1994) Microwave horns and feeds. Institution of Electrical Engineers (IEE) Electromagnetic Waves Ser. 39, New York.Google Scholar
Moreira, FJS and Prata, A (2001) Generalized classical axially symmetric dual-reflector antennas. IEEE Transactions on Antennas and Propagation 49, 547554. doi: 10.1109/8.923314.CrossRefGoogle Scholar
Kumar, C, Srinivasan, VV, Lakshmeesha, VK and Pal, S (2009) Performance of an electrically small aperture, axially displaced ellipse reflector antenna. IEEE Antennas and Wireless Propagation Letters 8, 903904. doi: 10.1109/LAWP.2009.2028444.CrossRefGoogle Scholar
Franco, MJ (2011) A high-performance dual-mode feed horn for parabolic reflectors with a stepped-septum polarizer in a circular waveguide [Antenna Designer’s Notebook]. IEEE Antennas and Propagation Magazine 53(3), 142146. doi: 10.1109/MAP.2011.6028434.CrossRefGoogle Scholar
Kumar, BP, Kumar, C, Kumar, VS and Srinivasan, VV (2020) Performance of an axially displaced ellipse reflector antenna with compact monopulse tracking feed for a small aperture transportable terminal. IEEE Transactions on Antennas and Propagation 68(3), 20082015. doi: 10.1109/TAP.2019.2948504.CrossRefGoogle Scholar
Tulum, MA and Turk, AS, “Side lobe lowered novel axially displaced ellipse antenna design for radio link system compliant with ETSI EN 302 217-4-2 Class 3,” 51st Europ. Microw. Conference, London, UK, 2022, 741744.10.23919/EuMC50147.2022.9784223CrossRefGoogle Scholar
Kim, W (2008) Low-loss feedome design for axially displaced ellipse (ADE) reflectors. IEEE Antennas and Wireless Propagation Letters 7, 721724. doi: 10.1109/LAWP.2008.2008450.CrossRefGoogle Scholar
Kumar, BP, Ratnakar Deokule, P, Kumar, C, Sriharsha, C and Kumar, VS, “Design of a compact steerable reflector antenna at Ka-band in axially dispaced ellipse geometry,” IEEE Indian Conf. Antennas Propag., Ahmedabad, India, 2019, 13.10.1109/InCAP47789.2019.9134686CrossRefGoogle Scholar
Liu, X, Du, B, Zhou, J and Xie, L (2021) Optimal design of elliptical beam cassegrain antenna. IEEE Access 9, 120765120773. doi: 10.1109/ACCESS.2021.3109000.CrossRefGoogle Scholar
Gupta, RC, Sood, KK and Jyoti, R (2013) “Compact and high-performance feed systems for prime-focus reflector antennas. International Journal of Microwave and Wireless Technologies 5(6), 753758. doi: 10.1017/S1759078713000500.CrossRefGoogle Scholar
Demirci, A, Sonmez, N, Tokan, F and Tokan, NT (2019) ‘Phase error analysis of displaced-axis dual reflector antenna for satellite earth stations. Aeu - International Journal of Electronics and Communications 110, 152824. doi: 10.1016/j.aeue.2019.152824.CrossRefGoogle Scholar
Wang, B, Ye, Q, Fu, L, Meng, G, Liu, Q and Shen, Z (2023) A surface deformation measurement algorithm for reflector antennas based on complex geometrical optics. International Journal of Microwave and Wireless Technologies 15(3), 454464. doi: 10.1017/S1759078722000666.CrossRefGoogle Scholar
Zaman, MA and Matin, MDA (2012) Far-field formulation of a Cassegrain reflector using a novel illumination function and aperture field integration. International Journal of Microwave and Wireless Technologies 4(6), 629634.10.1017/S1759078712000633CrossRefGoogle Scholar
Wang, J, Lin, H, Yang, F, Xu, G and Ge, J. (2022) Design of 94GHz dual-polarization antenna fed by diagonal horn for cloud radars. IEEE Access 10, 2248022486.10.1109/ACCESS.2022.3154483CrossRefGoogle Scholar
Yang, T, Wen, G, Jinsong, G and Xiaoguo, F (2016) Compact multi-band printed antenna with multi-triangular ground plane for WLAN/WiMAX/RFID applications. International Journal of Microwave and Wireless Technologies 8(2), 277281. doi: 10.1017/S1759078714001482.CrossRefGoogle Scholar
Dong, B Yang, J, Dahlström, J, Flygare, J, Pantaleev, M and Billade, B. (2018) Optimization and realization of quadruple‐ridge flared horn with new spline‐defined profiles as a high‐efficiency feed from 4.6 GHz to 24 GHz. IEEE Transactions on Antennas and Propagation 67(1), 585590. doi: 10.1109/TAP.2018.2874673.CrossRefGoogle Scholar
Gupta, RC, Pandya, J, Sood, KK and Jyoti, R (2011) Compact dual-band axially corrugated profiled horn for prime-focus reflector antenna. International Journal of Microwave and Wireless Technologies 3(4), 493496. doi: 10.1017/S175907871100050X.CrossRefGoogle Scholar
Zhang, P, Qi, J and Qiu, J (2017) Efficient design of axially corrugated coaxial-type multi-band horns for reflector antennas. International Journal of Microwave and Wireless Technologies 9(10), 19751981. doi: 10.1017/S175907871700085X.CrossRefGoogle Scholar
Tuloti, SHR, Rezaei, P and Hamedani, FT (2018) High-efficient wideband transmitarray antenna. IEEE Antennas Wirel. Propag. Lettand Wireless Propagation Letters 17(5), 817820. doi: 10.1109/LAWP.2018.2817363.CrossRefGoogle Scholar
Haghparast, AH and Rezaei, P (2023) High performance H-plane horn antenna using groove gap waveguide technology. AEU - International Journal of Electronics and Communications 163, 154620. May. doi: 10.1016/j.aeue.2023.154620.CrossRefGoogle Scholar
Ramazannia, SH, Rezaei, P and Hamedani, FT (2019) Unit-cell with flexible transmission phase slope for ultrawideband transmitarray antennas. IET Microwaves Antennas & Propagation 13(10), 15221528. doi: 10.1049/iet-map.2018.5288.CrossRefGoogle Scholar
Wu, J, Wang, C and Guo, YX (2020) Small reflector antenna with low sidelobes. IEEE Transactions on Antennas and Propagation 68(12), 78137821. doi: 10.1109/TAP.2020.3000858.CrossRefGoogle Scholar
Nasrabadi, E and Rezaei, P (2016) A novel design of reconfigurable monopole antenna with switchable triple band-rejection for UWB applications. International Journal of Microwave and Wireless Technologies 8(8), 12231229. doi: 10.1017/S1759078715000744.CrossRefGoogle Scholar
Kim, S (2021) Backfire suppressed low profile aperture coupled stacked patch antenna backed by a high impedance surface (HIS) reflector for UHF RFID reader applications. International Journal of Microwave and Wireless Technologies 13(10), 10721077. doi: 10.1017/S1759078720001671.CrossRefGoogle Scholar
Kumar, R and Praveen Kumar, AV (2020) A rectangular slot antenna with perfectly conducting superstrate and reflector sheets for superior radiation in the 6–9 GHz band. International Journal of Microwave and Wireless Technologies 12(10), 10391046. doi: 10.1017/S1759078720000355.CrossRefGoogle Scholar
Arnaud, E, Chantalat, R, Monediere, T, Rodes, E and Thevenot, M (2013) Achievements on circularly polarized horn-fed metallic electromagnetic band gap antenna design. International Journal of Microwave and Wireless Technologies 5(4), 507520. doi: 10.1017/S1759078713000019.CrossRefGoogle Scholar
Chashmi, MJ, Rezaei, P, Haghparast, AH and Zarifi, D (2022) Dual circular polarization 2×2 slot array antenna based on printed ridge gap waveguide technology in Ka band. AEU - International Journal of Electronics and Communications 157, 154433. doi: 10.1016/j.aeue.2022.154433.CrossRefGoogle Scholar
Haghparast, AH and Rezaei, P (2024) “Miniaturized, broadband, circular polarized horn antenna with groove gap waveguide technology. Radio Science 59, Aug. e2024RS007965. doi: 10.1029/2024RS007965.CrossRefGoogle Scholar
Arnaud, E, Duchesne, L, Elis, K, Fouany, J, Monediere, T and Thevenot, M (2017) Total efficiency enhancement of X-band compact choke horn antenna with circular polarization and isoflux pattern. International Journal of Microwave and Wireless Technologies 9(1), 197203. doi: 10.1017/S1759078715001117.CrossRefGoogle Scholar
Haghparast, A, Rezaei, P and Zilouchian, A (2024) Compact triple-band ring-shaped printed antenna with circular polarization. Journal of Electromagnetic Waves and Applications 39(2), 158173. doi: 10.1080/09205071.2024.2441437.CrossRefGoogle Scholar
Ferrando-Rocher, M, Herranz-Herruzo, JI, Valero-Nogueira, A and Bernardo-Clemente, B (2019) Full-metal K-Ka dual-band shared-aperture array antenna fed by combined ridge-groove gap waveguide. IEEE Antennas and Wireless Propagation Letters 18(7), 14631467. doi: 10.1109/LAWP.2019.2919928.CrossRefGoogle Scholar