Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T16:57:00.013Z Has data issue: false hasContentIssue false

On the evaluation of the high-frequency load line in active devices

Published online by Cambridge University Press:  18 January 2011

Antonio Raffo*
Affiliation:
Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
Gustavo Avolio
Affiliation:
Electronic Engineering Department, Katholieke Universiteit Leuven, B-3001Leuven, Belgium.
Dominique M.M.-P. Schreurs
Affiliation:
Electronic Engineering Department, Katholieke Universiteit Leuven, B-3001Leuven, Belgium.
Sergio Di Falco
Affiliation:
Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
Valeria Vadalà
Affiliation:
Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
Francesco Scappaviva
Affiliation:
Microwave Electronics for Communications (MEC) Srl, 40123 Bologna, Italy.
Giovanni Crupi
Affiliation:
Dipartimento di Fisica della Materia e Ingegneria Elettronica, University of Messina, 98166 Messina, Italy.
Bart Nauwelaers
Affiliation:
Electronic Engineering Department, Katholieke Universiteit Leuven, B-3001Leuven, Belgium.
Giorgio Vannini
Affiliation:
Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
*
Corresponding author: A. Raffo Email: antonio.raffo@unife.it

Abstract

In this work a de-embedding technique oriented to the evaluation of the load line at the intrinsic resistive core of microwave FET devices is presented. The approach combines vector high-frequency nonlinear load-pull measurements with an accurate description of the reactive nonlinearities, thus allowing one to determine the actual load line of the drain–source current generator under realistic conditions. Thanks to the proposed approach, the dispersive behavior of the resistive core and the compatibility of the voltage and current waveforms with reliability requirements can be directly monitored. Different experiments carried out on a gallium nitride HEMT sample are reported.

Type
Research Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Zolper, J.C.: Wide Bandgap Semiconductor Microwave Technologies: from Promise to Practice, Electron Devices Meeting, Washington, 1999.Google Scholar
[2]Trew, R.J.: Wide bandgap semiconductor transistors for microwave power amplifiers. IEEE Microw. Mag., 1 (2000), 4654.CrossRefGoogle Scholar
[3]Binari, S.C.; Klein, P.B.; Kazior, T.E.: Trapping effects in GaN and SiC microwave FETs. IEEE Proc., 90 (2002), 10481058.CrossRefGoogle Scholar
[4]Ventury, R.; Zhang, N.Q.; Keller, S.; Mishra, U.K.: The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Microw. Theory Tech., 48 (2001), 560566.Google Scholar
[5]Verspecht, J.: Large signal network analysis. IEEE Microw. Mag., 6 (2005), 8292.CrossRefGoogle Scholar
[6]Tasker, P.J.: Practical waveform engineering. IEEE Microw. Mag., 10 (2009), 6576.CrossRefGoogle Scholar
[7]Cripps, S.C.: RF Power Amplifiers for Wireless Communication, Artech House, Norwood, MA, 1999.Google Scholar
[8]Raffo, A.; Scappaviva, F.; Vannini, G.: A new approach to microwave power amplifier design based on the experimental characterization of the intrinsic electron-device load line. IEEE Trans. Microw. Theory Tech., 57 (7) (2009), 17431752.CrossRefGoogle Scholar
[9]Raffo, A.; Vadalà, V.; Di Falco, S.; Scappaviva, F.; Vannini, G.: Hybrid approach to microwave power amplifier design, in Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits, Gothenburg, 2010, 2427.CrossRefGoogle Scholar
[10]Filicori, F.; Santarelli, A.; Traverso, P.A.; Raffo, A.; Vannini, G.; Pagani, M.: Non-linear RF device modelling in the presence of low-frequency dispersive phenomena. Int. J. RF Microw. CAE, 16 (2006), 8194.CrossRefGoogle Scholar
[11]Schreurs, D.; Verspecht, J.; Nauwelaers, B.; Van de Capelle, A.; Van Rossum, M.: Direct extraction of the non-linear model for two-port devices from vectorial non-linear network analyzer measurements, in European Microwave Conf., Jerusalem, 1997.CrossRefGoogle Scholar
[12]Curras-Francos, M.C.; Tasker, P.J.; Fernandez-Barciela, M.; Campos-Roca, Y.; Sanchez, E.: Direct extraction of nonlinear FET Q-V functions from time domain large signal measurements. IEEE Microw. Guid. Wave Letters, 10 (2000), 531533.CrossRefGoogle Scholar
[13]Wright, P.; Sheikh, A.; Roff, C.; Tasker, P.J.; Benedikt, J.: Highly efficient operation modes in GaN power transistors delivering upwards of 81% efficiency and 12W output power, in Microwave Symp. Digest, Atlanta, 2008.CrossRefGoogle Scholar
[14]Dambrine, G.; Cappy, A.; Heliodore, F.; Playez, E.: A new method for determining the FET small-signal equivalent circuit. IEEE Trans. Microw. Theory Tech., 36 (1988), 11511159.CrossRefGoogle Scholar
[15]Resca, D.; Raffo, A.; Santarelli, A.; Vannini, G.; Filicori, F.: Scalable equivalent circuit FET model for MMIC design identified through FW-EM analyses. IEEE Trans. Microw. Theory Tech., 57 (2009), 245253.CrossRefGoogle Scholar
[16]Raffo, A. et al. : Nonlinear dispersive modeling of electron devices oriented to GaN power amplifier design. IEEE Trans. Microw. Theory Tech., 58 (2010), 710718.CrossRefGoogle Scholar
[17]Roh, T.; Kim, Y.; Suh, Y.; Park, W.; Kim, B.: A simple and accurate MESFET channel-current model including bias-dependent dispersion and thermal phenomena. IEEE Trans. Microw. Theory Tech., 45 (1997), 12521255.Google Scholar