Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T04:58:25.011Z Has data issue: false hasContentIssue false

Optimization of circular antenna arrays of isotropic radiators using simulated annealing

Published online by Cambridge University Press:  09 December 2009

Munish Rattan*
Affiliation:
Department of Electronics and Communication Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India.
M.S. Patterh
Affiliation:
Department of Electronics and Communication Engineering, University College of Engineering, P.U. Patiala, Punjab, India.
B.S. Sohi
Affiliation:
Surya School of Engg. and Technology, Patiala, Punjab, India.
*
Corresponding author: M. Rattan E-mail: rattanmunish@gndec.ac.in

Abstract

This paper presents the design optimization of circular antenna arrays of isotropic radiators using simulated annealing. The problem has been formulated to achieve a desired value of sidelobe level and a minimum possible value of beamwidth. This is accomplished by jointly optimizing the excitation amplitude and spacing between elements. Simulation examples have been given and comparison has been carried out with particle swarm optimization method.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd ed., John Wiley, New York, 2005.Google Scholar
[2]Ioannides, P.I.; Balanis, C.A.: Uniform circular arrays for smart antennas, in IEEE Antenna and Propagation Society International Symp., Monterey, CA, vol. 3, 2004, 27962799.CrossRefGoogle Scholar
[3]Jin, L.; Li, L.; Wang, H.: Investigation of different types of array structures for smart antennas, in Int. Conf. Microwave and Millimeter Wave Technology, vol. 3 no. 21–24, 2008, 11601163.Google Scholar
[4]Rudge, A.W.; Milne, K.; Olver, A.D.; Knight, P.: The Handbook of Antenna Design. IET Electromagnetic Wave Series 16, vol. 2, 1983, 319.Google Scholar
[5]Duhamel, R.H.: Pattern synthesis for antenna arrays on circular, elliptical, and spherical surfaces. Technical Report No. 16, EE Research Lab., University of Illinois, Urbana, 1952.Google Scholar
[6]Taylor, T.T.: Design of circular apertures for narrow beam width and low sidelobes. IRE Trans. Antenna Propag., 8 (1) (1960), 1722.CrossRefGoogle Scholar
[7]Stearns, C.O.; Stewart, A.C.: An investigation of concentric ring antennas with low sidelobes. IEEE Trans. Antenna Propag., 13 (6) (1965), 856863.CrossRefGoogle Scholar
[8]Royer, G.M.: Directive gain and impedance of a ring array of antennas. IEEE Trans. Antenna Propag., 14 (5) (1966), 566573.CrossRefGoogle Scholar
[9]Chu, T.S.: On the use of uniform circular arrays to obtain omnidirectional patterns. IRE Trans. Antenna Propag., 7 (4) (1959), 436.Google Scholar
[10]Hansen, R.C.: Tables of Taylor distributions for circular aperture antennas. IRE Trans. Antenna Propag., 8 (1) (1960), 2326.CrossRefGoogle Scholar
[11]Vescovo, R.: An extension of the Dolph–Chebyshev synthesis technique to circular array of antennas. Int. J. Infrared Millimeter Waves, 20 (11) (1999), 19571975.CrossRefGoogle Scholar
[12]Sykulski, J.K.; Rotaru, M.; Sabene, M.; Santilli, M.: Comparison of optimization techniques for electromagnetic applications. COMPEL – Int. J. Comput. Math. Electrical Electron. Eng., 17 (1–3) (1998), 171176.CrossRefGoogle Scholar
[13]Rattan, M.; Patterh, M.S.; Sohi, B.S.: Antenna array optimization using evolutionary approaches. J. Apeiron, 15 (1) (2008), 7893.Google Scholar
[14]Haupt, R.L.: Thinned arrays using genetic algorithms. IEEE Trans. Antenna Propag., 42 (1994), 993999.CrossRefGoogle Scholar
[15]Panduro, M.: Design of non uniform circular antenna rays for sidelobe reduction using method of genetic algorithms. Int. J. Electron. Commun., 60 (2006), 713717.CrossRefGoogle Scholar
[16]Rattan, M.; Patterh, M.S.; Sohi, B.S.: Design of Yagi-Uda antenna using Genetic Algorithm employing radii perturbations. J. Multi Disciplinary Eng. Technol., 2 (2) (2008), 5359.Google Scholar
[17]Rattan, M.; Patterh, M.S.; Sohi, B.S.: Synthesis of aperiodic linear antenna arrays using Genetic Algorithm, in IEEE Int.l Conf. – ICECOM 2007, Crotia, 2007.CrossRefGoogle Scholar
[18]Shihab, M.; Najjar, Y.; Dib, N.; Khodier, M.: Design of non uniform circular antenna arrays using Particle Swarm Optimization. J. Electr. Eng., 59 (4) (2008), 216220.Google Scholar
[19]Mahmoud, K.R. et al. : A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization. J. Prog. Electromagn. Res., 72 (2007), 7590.CrossRefGoogle Scholar
[20]Rattan, M.; Patterh, M.S.; Sohi, B.S.: Optimization of gain, impedance and bandwidth of Yagi Uda array using particle swarm optimization. Int. J. Antenna Propagation, (2008), 14.Google Scholar
[21]Rattan, M.; Patterh, M.S.; Sohi, B.S.: Design of a linear array of half wave parallel dipoles using particle swarm optimization. J. Prog. Electromagn. Res. M, 2 (2008), 131139.CrossRefGoogle Scholar
[22]Kirkpatrick, S.; Gellatt, C.D.; Vecchi, M.P.: Optimization by simulated annealing. Science, 220 (4598) (1983), 671680.CrossRefGoogle ScholarPubMed
[23]Saloman, P.; Sibani, P.; Frost, R.: Facts, Conjectures, and Improvements for Simulated Annealing, Society for Industrial and Applied Mathematics, Philadelphia, 2002.CrossRefGoogle Scholar
[24]Murino, V.; Trucco, A.; Regazzoni, C.S.: Synthesis of unequally spaced arrays by simulated annealing. IEEE Trans. Signal Process., 44 (1) (1996), 119123.CrossRefGoogle Scholar
[25]Redvik, J.: Simulated Annealing Optimization applied to antenna arrays with failed elements, in Proc. IEEE Antenna and Propagation Society International Symp., vol. 1, 1999, 458461.Google Scholar
[26]Ruf, C.S.: Numerical annealing of low-redundancy linear arrays. IEEE Trans. Antenna Propag., 41 (1993), 8590.CrossRefGoogle Scholar
[27]Rattan, M.; Patterh, M.S.; Sohi, B.S.: Design of linear antenna arrays with minimum sidelobe level and null control using simulated annealing. J. Inst. Eng. (India), 90 (2009), 3740.Google Scholar
[28]Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys., 21 (6) (1953), 10871092.CrossRefGoogle Scholar
[29]Ruenbar, A.R.: Simulated annealing algorithms: an overview. IEEE Circuits Dev. Mag. (1999), 1926.Google Scholar