Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T05:03:11.986Z Has data issue: false hasContentIssue false

Reactive impedance surface-based broadband circularly polarized Koch fractal boundary microstrip antenna

Published online by Cambridge University Press:  22 December 2014

V. V. Reddy*
Affiliation:
Department of Electronics and Communication Engineering, National Institute of Technology Warangal, Telangana, India
N.V.S.N. Sarma
Affiliation:
Department of Electronics and Communication Engineering, National Institute of Technology Warangal, Telangana, India
*
Corresponding authorV. V. Reddy Email: vvreddy2005@gmail.com

Abstract

A circularly polarized (CP) broadband antenna is proposed for wireless applications in the range of 2–3 GHz frequency. It consists of asymmetrical Koch fractal boundary patch over a reactive impedance surface (RIS) substrate. The simulations of single-layer Koch fractal antenna, dual layer with square and fractal RIS elements are carried out in a systematic way for broadband CP radiation and corresponding results are presented. For better CP characteristics, properties of fractal curves and dimensions of RIS elements are optimized. The antenna with fractal RIS iteration order one (iteration1) is experimentally studied. The 10-dB return loss bandwidth is 50.35%, whereas 3-dB axial ratio bandwidth is 7.45%, which indicate that by applying fractals concept to RIS technique, with a single probe feed, broadband CP radiation can be obtained.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Sharma, P.C.; Gupta, K.C.: Analysis and optimized design of single feed circularly polarized microstrip antennas. IEEE Trans. Antennas Propag., 31 (6) (1983), 949955.Google Scholar
[2]Wen-Shayang, C.; Chun-kun, W.U.; Wong, K.L.: Novel compact circularly polarized square microstrip antenna. IEEE Trans. Antennas Propag., 49 (3) (2001), 340342.Google Scholar
[3]Sung, Y.: Dual-Band circularly polarized pentagonal slot antenna. IEEE Antennas Wireless Propag. Lett., 10 (2011), 259261.Google Scholar
[4]Wong, M.L.; Wong, H.; Luk, K.M.: Small circularly polarized patch antenna. Electron. Lett., 41 (2005), 78.Google Scholar
[5]Nasimuddin, Qing X., Chen, Z.N.: Compact asymmetric-slit microstrip antennas for circular polarization. IEEE Trans. Antennas Propag., 59 (1) (2011), 285288.Google Scholar
[6]Nasimuddin, Qing X., Chen, Z.N.: A compact circular polarized cross-shaped slotted microstrip antenna. IEEE Trans. Antennas Propag., 60 (3) (2012), 15841588.Google Scholar
[7]Nasimuddin, Qing X., Chen, Z.N.: Asymmetric-circular shaped slotted microstrip antennas for circular polarization and RFID applications. IEEE Trans. Antennas Propag., 58 (12) (2010), 38213828.CrossRefGoogle Scholar
[8]Chen, Z.N.; Nasimuddin: Aperture-coupled asymmetrical C-shaped slot microstrip antenna for circular polarization. IET Microw. Antennas Propag., 3 (3) (2009), 372378.Google Scholar
[9]Lai, H.W.; Mak, M.K.; Chan, K.F.: Novel aperture-coupled microstrip-line feed for circularly polarized patch antenna. Progress Electromagn. Res., 144 (2014), 19.CrossRefGoogle Scholar
[10]Tong, K.-F.; Lacotte, G.; Huang, J.: Wideband single-fed proximity coupled circularly polarised annular slot antenna. IET Microw. Antennas Propag., 4 (10) (2010), 14511455.CrossRefGoogle Scholar
[11]Colburn, J.S.; Rahmat-Samii, Y.: Patch antennas on externally perforated high dielectric constant substrates. IEEE Trans. Antennas Propag., 47 (12) (1999), 17851794.CrossRefGoogle Scholar
[12]Mosallaei, H.; Sarabandi, K.: Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. Antennas Propag., 52 (9) (2004), 24032414.Google Scholar
[13]Buerkle, A.M.; Sarabandi, K.: Compact wideband UHF patch antenna on a reactive impedance substrate. IEEE Antennas Wireless Propag. Lett., 5 (1) (2006), 503506.Google Scholar
[14]Bernard, L.; Chertier, G.; Sauleau, R.: Wideband circularly polarized patch antennas on reactive impedance substrates. IEEE Antennas Wireless Propag. Lett., 10 (2011), 10151018.Google Scholar
[15]Agarwal, K.; Nasimuddin, X.Q.; Alphones, A.: RIS-based compact circularly polarized microstrip antennas. IEEE Trans. Antennas Propag., 61 (2) (2013), 547554.Google Scholar
[16]Balanis, C.A.: Antenna Theory Analysis and Design, 3rd ed., John Wiley & Sons Inc., New Jersey, 2005.Google Scholar
[17]Borja, C.; Romeu, J.: On the behavior of the Koch island fractal boundary microstrip patch antenna. IEEE Trans. Antennas Propag., 51 (6) (2003), 12811291.Google Scholar
[18]Reddy, V.V.; Sarma, N.V.S.N.: Compact circularly polarized asymmetrical fractal boundary microstrip antennas for wireless applications. IEEE Antennas Wireless Propag. Lett., 13 (2014), 118121.Google Scholar