No CrossRef data available.
Published online by Cambridge University Press: 12 March 2014
This work presents radio-frequency-microelectromechanical-system (RF-MEMS)-based tunable matching networks for a multi-band gallium nitride (GaN) power amplifer (PA) application. In the frequency range from 3.5–8.5 GHz return losses of 5–10 dB were measured for the input network, matching impedances close to the border of the Smith chart. For the output matching network return losses of 10–20 dB and insertion losses of 1.3–2 dB were measured. The matching networks can tune the PA to four different operating frequencies, as well as changing the transistor's mode of operation from maximum delivered-output-power to maximum power-added-efficiency (PAE), while keeping the operating frequency constant. Furthermore, different single pole double throw (SPDT)-switches are designed and characterized, to be used in frequency-agile transmit/receive-modules (T/R modules).