Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T13:15:23.007Z Has data issue: false hasContentIssue false

Rigorous study of propagation in metallic circular waveguide filled with anisotropic metamaterial

Published online by Cambridge University Press:  05 January 2017

Hedi Sakli*
Affiliation:
Communication System Laboratory Sys'Com, National Engineering School Of Tunis, University Tunis El Manar, B.P: 37, Le Belvédère, 1002 Tunis, Tunisia
Mohamed Yahia
Affiliation:
Communication System Laboratory Sys'Com, National Engineering School Of Tunis, University Tunis El Manar, B.P: 37, Le Belvédère, 1002 Tunis, Tunisia
Wyssem Fathallah
Affiliation:
Communication System Laboratory Sys'Com, National Engineering School Of Tunis, University Tunis El Manar, B.P: 37, Le Belvédère, 1002 Tunis, Tunisia
Jun Wu Tao
Affiliation:
Laboratoire Plasma et Conversion d'Energie LAPLACE, Ecole Nationale Supérieure d'Electrotechnique, d'Electronique, d'Informatique, d'Hydraulique et des Télécommunications, 2 rue Camichel, Toulouse, cedex 31071, France
Taoufik Aguili
Affiliation:
Communication System Laboratory Sys'Com, National Engineering School Of Tunis, University Tunis El Manar, B.P: 37, Le Belvédère, 1002 Tunis, Tunisia
*
Corresponding author: H. Sakli Email: saklihedi12@gmail.com

Abstract

This paper presents an extension of the formulation of wave propagation in transverse electric (TE) and transverse magnetic (TM) modes in the case of metallic circular waveguides filled with anisotropic metamaterials. The determined higher-order modes have been analyzed and exploited to the design of filters. Among the particularities of anisotropic material, the backward waves can propagate below the cut-off frequency. The numerical results for TE and TM modes have been compared with theoretical predictions. Good agreements were obtained. We analyzed a periodic structure containing waveguides filled with anisotropic metamaterial using the mode-matching technique. By using modal analysis, our approach reduced considerably the computation time compared to HFSS.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alu, A.; Engheta, N.: Mode excitation by a line source in a parallel plate waveguide filled with a pair of parallel double-negative and double-positive slabs, in IEEE AP-S Int. Symp., Columbus, OH, 2003, 359362.Google Scholar
[2] Xu, Y.: Wave propagation in rectangular waveguide filled with single negative metamaterial slab. IEE Electron. Lett., 39 (25) (2003), 18311833.CrossRefGoogle Scholar
[3] Xu, Y.: A study of waveguides field with anisotropic metamaterials. Microw. Opt. Technol. Lett., 41 (2004), 426431.CrossRefGoogle Scholar
[4] Alu, A.; Engheta, N.: Guided modes in a waveguide filled with a pair of single-negative (SNG), double negative (DNG), and/or double-positive (DPS) layers. IEEE Trans. Microw. Theory Tech., 52 (2004), 199210.CrossRefGoogle Scholar
[5] Cory, H.; Shtrom, A.: Wave propagation along a rectangular metallic waveguide longitudinally loaded with a metamaterial slab. Microw. Opt. Technol. Lett., 41 (2) (2004), 123127.CrossRefGoogle Scholar
[6] Meng, F.Y.; Wu, Q.; Fu, J.H.; Gu, X.M.; Li, L.W.: Transmission characteristics of wave modes in a rectangular waveguide filled with anisotropic metamaterial. Appl. Phys. A, 94 (2009), 747753.CrossRefGoogle Scholar
[7] Meng, F.Y.; Wu, Q.; Li, L.W.: Controllable metamaterial-loaded waveguides supporting backward and forward waves transmission characteristics of wave modes in a rectangular waveguide filled with anisotropic metamaterial. IEEE Trans. Antennas Propag., 59 (9) (2011), 34003411.CrossRefGoogle Scholar
[8] Zhang, D.; Ma, J.: The propagation and cutoff frequencies of the rectangular metallic waveguide partially filled with metamaterial multilayer slabs. Progr. Electromagn. Res. M, 9 (2009), 3540.CrossRefGoogle Scholar
[9] Pan, Y.; Xu, S.: Cpmlex modes in parallel-plate waveguide structure filled with left-handed material. Chin. J. Electron., 18 (3) (2009), 551554.Google Scholar
[10] Cojocaru, E.: Waveguides filled with bilayers of double-negative (DNG) and double-positive (DPS) metamaterials. Progr. Electromagn. Res. B, 32 (2011), 7590.CrossRefGoogle Scholar
[11] Fathallah, W.; Sakli, H.; Aguili, T.: Electromagnetic wave propagation in anisotropic metamaterial waveguides. JNM, Int. J. Numer. Modell, 28 (2015), 479486.CrossRefGoogle Scholar
[12] Fathallah, W.; Sakli, H.; Aguili, T.: Full-wave study of rectangular metamaterial waveguides using Galerkin's method, in 8th Int. Multi-Conf. on Systems, Signals and Devices, SSD'13, Hammamet, Tunisia, March 2013.CrossRefGoogle Scholar
[13] Marques, R.; Martel, J.; Mesa, F.; Medina, F.: Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides. Phys. Rev. Lett., 89 (2002), 183901.CrossRefGoogle ScholarPubMed
[14] Balanis, C.A.: “Circular Waveguides”, Material in Advanced Engineering Electromagnetics, Wiley, New York, 1989, Sect. 9.2, 643650.Google Scholar
[15] Boyenga, D.L.; Mabika, C.N.; Diezaba, A.: A new multimodal variational formulation analysis of cylindrical waveguide uniaxial discontinuities. Res. J. Appl. Sci., Eng. Technol., 6 (5) (2013), 787792.CrossRefGoogle Scholar
[16] Thabet, R.; Riabi, M.L.; Belmeguenai, M.: Rigorous design and efficient optimization of quarter-wave transformers in metallic circular waveguides using the mode-matching method and the genetic algorithm. Progr. Electromagn. Res., 68 (2007), 1533.Google Scholar
[17] Mahmoud, S.F.: Guided modes on open chirowaveguides. IEEE Trans. Microw. Theory Tech., 43 (1) (1995), 205209.CrossRefGoogle Scholar
[18] Shadrivov, I.V.; Sukhorukov, A.A.; Kivshar, Y.S.: Guided modes in negative-refractive-index waveguides. Phys. Rev. E, 67 (2003), 057602.CrossRefGoogle ScholarPubMed
[19] Dong, J.-F.; Li, J.: Characteristics of guided modes in uniaxial chiral circular waveguides. Progr. Electromagn. Res., 124 (2012), 331345.CrossRefGoogle Scholar
[20] Couffignal, P.: Contribution à l’étude des filters en guides métalliques. Thesis, INP, Toulouse, France, 1992.Google Scholar
[21] Fathallah, W.; Sakli, H.; Aguili, T.: Scattering matrix analysis of uniaxial anisotropic waveguide discontinuities. IRECAP, Int. J. Commun. Antenna Propag., 4 (3) (2014), 8793..Google Scholar