Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T11:46:01.108Z Has data issue: false hasContentIssue false

Single-layer fully-planar extended-composite right-/left-handed transmission lines based on substrate integrated waveguides for dual-band and quad-band applications

Published online by Cambridge University Press:  02 May 2013

Miguel Durán-Sindreu*
Affiliation:
GEMMA/CIMITEC, Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193Spain Department of Electrical Engineering, University of California, Los Angeles 405 Hilgard Avenue, Los Angeles, CA 90095, USA
Jordi Bonache
Affiliation:
GEMMA/CIMITEC, Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193Spain
Ferran Martín
Affiliation:
GEMMA/CIMITEC, Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193Spain
Tatsuo Itoh
Affiliation:
Department of Electrical Engineering, University of California, Los Angeles 405 Hilgard Avenue, Los Angeles, CA 90095, USA
*
Corresponding author: M. Durán-Sindreu Email: Miguel.duransindreu@uab.cat

Abstract

The implementation and application of single-layer fully-planar extended-composite right-/left-handed transmission lines (E-CRLH TLs) in substrate-integrated waveguide (SIW) technology are presented. The multiband CRLH behavior of these artificial lines is explained by considering the lumped element equivalent circuit model. The potential of these lines for dual-band and quad-band applications is demonstrated by designing and fabricating a quad-band Y-junction power divider and two dual-band band-pass filters. The main relevant advantage of SIW-based E-CRLH TLs over other E-CRLH lines is fabrication simplicity, since only a single metal layer must be etched and lumped elements are avoided. The fabricated prototypes exhibit very reasonable performance. It is remarkable that for dual-band band-pass filters, standard Chebyshev responses can be obtained to a very good approximation.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Caloz, C.; Itoh, T.: Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, New Jersey, 2006.Google Scholar
[2]Marqués, R.; Martín, F.; Sorolla, M.: Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, John Wiley & Sons Inc., New York, 2007.Google Scholar
[3]Lin, I.H.; De Vincentis, M.; Caloz, C.; Itoh, T.: Arbitrary dual-band components using right/left handed transmission lines. IEEE Trans. Microw. Theory Tech., 52 (4) (2004), 11421149.CrossRefGoogle Scholar
[4]Eleftheriades, G.V.; Iyer, A.K.; Kremer, P.C.: Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microw. Theory Tech., 50 (2002), 27022712.Google Scholar
[5]Rennings, A.; Otto, S.; Mosig, J.; Caloz, C.; Wolff, I.: Extended composite right/left-handed (E-CRLH) metamaterial and its application as quadband quarter-wavelength transmission line, in Asia-Pacific Microwave Conf. (APMC), Yokohama, Japan, 2006, 14051408.Google Scholar
[6]Eleftheriades, G.V.: A generalized negative-refractive-index transmission-line (NRL-TL) metamaterial for dual-band and quad-band applications. IEEE Microw. Wirel. Compon. Lett., 17 (2007), 415417.Google Scholar
[7]Studniberg, M.; Eleftheriades, G.V.: Physical implementation of a generalized NRI-TL medium for quad-band applications, in Proc. 37th European Microwave Conf., Munich (Germany), 2007, 408411.CrossRefGoogle Scholar
[8]Chen, B.H.; Zhang, Y.N.; Wu, D.; Seo, K.: Novel composite right/left handed transmission line for quad-band applications, in 11th IEEE Singapore Int. Conf. Communication Systems, 2008 (ICCS 2008), 2008, 617620.Google Scholar
[9]Papanastasiou, A.C.; Georghiou, G.E.; Eleftheriades, G.V.: A quad-band Wilkinson power divider using generalized NRI transmission lines. IEEE Microw. Wirel. Compon. Lett., 18 (2008), 521523.Google Scholar
[10]Studniberg, M.; Eleftheriades, G.V.: A dual-band bandpass filter based on generalized negative-refractive-index transmission-lines. IEEE Microw. Wirel. Compon. Lett., 19 (2009), 1820.Google Scholar
[11]Durán-Sindreu, M.; Sisó, G.; Bonache, J.; Martín, F.: Fully planar implementation of generalized composite right/left handed transmission lines for quad-band applications, in IEEE-MTT Int. Microw. Symp., Anaheim (USA), 2010, 2528.Google Scholar
[12]Durán-Sindreu, M.; Sisó, G.; Bonache, J.; Martín, F.: Planar multi-band microwave components based on the generalized composite right/left handed transmission line concept. IEEE Trans. Microw. Theory Tech., 58 (2010), 38823891.Google Scholar
[13]Ryan, C.G.M.; Eleftheriades, G.V.: Dual-band leaky-wave antenna based on generalized negative-refractive-index transmission-lines, in 2010 IEEE Antennas and Propagation Society International Symposium (APS-URSI), Toronto, 2010, 14.Google Scholar
[14]Deslandes, D.; Wu, K.: Integrated microstrip and rectangular waveguide in planar form. IEEE Microw. Wireless Compon. Lett., 11 (2001), 6870.Google Scholar
[15]Deslandes, D.; Wu, K.: Single-substrate integration technique of planar circuits and waveguide filters. IEEE Trans. Microw. Theory Tech., 51 (2003), 593596.Google Scholar
[16]Deslandes, D.; Wu, K.: Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide. IEEE Trans. Microw. Theory Tech., 54 (2006), 25162526.Google Scholar
[17]Zhao, H.; Cui, T.J.; Lin, X.Q.; Ma, H.F.: The study of composite right/left handed structure in substrate integrated waveguide, in Int. Symp. on Biophotonics, Nanophotonics and Metamaterials, 2006, 547549.Google Scholar
[18]Dong, Y.; Itoh, T.: Composite right/left-handed substrate integrated waveguide and half-mode substrate integrated waveguide, In IEEE-MTT Int. Microw. Symp., Boston, USA 2009, 4952.Google Scholar
[19]Durán-Sindreu, M.; Bonache, J.; Martín, F.; Itoh, T.: Novel fully-planar extended-composite right/left handed transmission line based on substrate integrated waveguide for multi-band applications, in Proc. 42th European Microwave Conf., Amsterdam, The Netherlands, 2012, 578581.CrossRefGoogle Scholar
[20]Dong, Y.; Itoh, T.: Substrate integrated waveguide negative-order resonances and their applications. IET Microw. Antennas Propag., 4 (2010), 10811091.Google Scholar
[21]Durán-Sindreu, M.; Bonache, J.; Martín, F.: Compact CPW dual-band bandpass filters based on semi-lumped elements and metamaterial concepts, in Asia Pacific Microwave Conf. (APMC’10), Yokohama, Japan, 2010, 670673.Google Scholar
[22]Eleftheriades, G.V.: Correction to “a generalized negative-refractive-index transmission-line (NRI-TL) metamaterial for dual-band and quad-band applications.” IEEE Microw. Wirel. Compon. Lett., 20 (2010), 130.Google Scholar
[23]Eleftheriades, G.V.: Design of generalised negative-refractive-index transmission lines for quad-band applications. IET Microw. Antennas Propag., 4 (2010), 977981.Google Scholar
[24]Guan, X.; Ma, Z.; Cai, P.; Kobayashi, Y.; Anada, T.; Hagiwara, G.: Synthesis of dual-band bandpass filters using successive frequency transformations and circuit conversions. IEEE Microw. Wirel. Compon. Lett., 16 (2009), 110112.Google Scholar