Super-wideband and compact omnidirectional antenna with simple structure and improved radiation properties
Published online by Cambridge University Press: 26 April 2016
Abstract
A super-wideband (SWB) omnidirectional antenna is reported in Lau et al. in 2005 and 2008, but the antenna structure was complex and the radiation properties were unsatisfactory. In this paper, a SWB omnidirectional antenna with simple structure and improved radiation properties is presented. The antenna just consists of a two-stage inverted cone and two shorting pins. The proposed two-stage cone can improve the impedance matching in super-wide bandwidth, and the optimized shorting pins can reduce the cut-off frequency more than 50%. The calculated and measured results are investigated to confirm the antenna performances. The impedance bandwidth of the antenna for voltage standing wave ratio ≤ 2 achieves more than 1:22.1, covering 0.905 GHz to the above band. The smaller sizes than those referred by Lau et al. in 2008 are obtained. The profile of the antenna is 0.078λc, and the diameter of the radiation body is 0.217λc (λc is the wavelength of the cut-off frequency of the antenna). In addition, the radiation properties of the kind of SWB omnidirectional antenna are improved obviously. In the whole band, the ripple levels in horizontal radiation patterns are not more than 6.6 dB, and the cross-polarized levels are reduced by 9 dB.
- Type
- Research Papers
- Information
- International Journal of Microwave and Wireless Technologies , Volume 9 , Issue 3 , April 2017 , pp. 711 - 717
- Copyright
- Copyright © Cambridge University Press and the European Microwave Association 2016
References
REFERENCES
- 1
- Cited by