Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T13:22:51.654Z Has data issue: false hasContentIssue false

Vertical displacement detection of an aluminum nitride piezoelectric thin film using capacitance measurements

Published online by Cambridge University Press:  06 March 2009

Mahmoud Al Ahmad*
Affiliation:
University of Toulouse, LAAS CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse Cedex 4, France.
Robert Plana
Affiliation:
University of Toulouse, LAAS CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse Cedex 4, France.
*
Corresponding author: M.A. Ahmad E-mail: al-ahmad.mahmoud@ieee.org

Abstract

Piezoelectric materials have a strong interaction between their mechanical and electrical properties that translates into innovative components and circuits architectures. This work describes an original method using the electromechanical properties of the aluminum nitride (AlN) piezoelectric material to characterize its vertical extension when an electric field is applied. The novel techniques based on measurements of a planar parallel plate AlN capacitor without and with bias employing an impedance analyzer. The parallel plate capacitor theory and piezoelectric material analysis are used to calculate the vertical displacement of the AlN film.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Torah, R. N.; Beeby, S. P.; White, N. M.: Experimental investigation into the effect of substrate clamping on the piezoelectric behaviour of thick-film PZT elements. J. Phys. D: Appl. Phys., 37 (2004), 10741078.CrossRefGoogle Scholar
[2]Royer, D.; Kmetik, V.: Measurement of piezoelectric constants using an optical hetrodyne interferrometer. Electron. Lett., 28 (19) (1992), 18281830.CrossRefGoogle Scholar
[3]Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng., 10 (2000), 136146.CrossRefGoogle Scholar
[4]Shepard, J. F.; Moses, P. J.; Trolier-McKinstry, S.: The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d(31)) of PZT thin films. Sensors Actuators A, 71 (1998), 133338.CrossRefGoogle Scholar
[5]Dong-Guk Kim, ; Ho-Gi Kim, : A new characterization of piezoelectric thin films. Appl. Ferroelectr., (1998), 6568.Google Scholar
[6]Zhang, Y.; Wang, Z.; Cheeke, J. D. N.: Resonant spectrum method to characterize piezoelectric films in composite resonators. IEEE Trans. Ultrason, Ferroelectr. Frequency Control, 50 (3) (2003), 321333.CrossRefGoogle ScholarPubMed
[7]Gautier, B.; Ballandras, S.; Blondeau-Patissier, V.; Daniau, W.; Hauden, D.; Labrune, J.C.: Contribution to the understanding of quantitative measurements of piezoelectric coefficients of thin films using AFM piezoresponse mode. Appl. Ferroelectr., (2002), 99102.Google Scholar
[8]Al-Ahmad, M.; Plana, R.: A novel method for PZT thin film piezoelectric coefficients determination using conventional impedance analyzer. in Proc. 37th European Microwave Conf.Munich/Germany, October 2007, 202205.CrossRefGoogle Scholar
[9]Wadell, Brian C.: Transmission Line Design Handbook. Artech House: Norwood, 1991.Google Scholar
[10]Nellya, N.Rogacheva, : The Theory of Piezoelectric Shells and Plates, CRC Press LLC, New York, USA, 1994.Google Scholar
[11]Jaffe, B.; Cook, W. R.; Jaffe, H.: Piezoelectric Ceramics, R. A. N. Publishers, Marietta, OH, 1971.Google Scholar