Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T10:12:48.114Z Has data issue: false hasContentIssue false

Wideband MIMO antenna system with dual polarization for WiFi and LTE applications

Published online by Cambridge University Press:  04 March 2015

Alishir Moradikordalivand*
Affiliation:
Faculty of Electrical Engineering, Wireless Communication Center, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. Phone: + 60172793063 Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran
Chee Yen Leow
Affiliation:
Faculty of Electrical Engineering, Wireless Communication Center, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. Phone: + 60172793063
Tharek Abd Rahman
Affiliation:
Faculty of Electrical Engineering, Wireless Communication Center, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. Phone: + 60172793063
Sepideh Ebrahimi
Affiliation:
Department of Engineering, Islamic Azad University, Aligoudarz Branch, Aligoudarz, Iran
Tien Han Chua
Affiliation:
Faculty of Electrical Engineering, Wireless Communication Center, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. Phone: + 60172793063
*
Corresponding author: A. Moradikordalivand Email: alimoradi2020@gmail.com

Abstract

In this paper a wideband multi-input multi-output (MIMO) antenna system for WiFi-LTE wireless access point (WAP) application is proposed. The MIMO antenna system consists of two common element microstrip-fed monopole antennas with dual polarization. Physically closed integration of MIMO antenna elements requires a special technique to increase the isolation between the antennas. A novel structure of parasitic element is introduced to improve the isolation between the antennas. The proposed MIMO antenna system is simulated and optimized using CST Microwave Studio. The designed antenna system is fabricated and measured to verify the simulation results. Reflection coefficient of less than −10 dB and isolation more than 15 dB are achieved in the operating frequency range of 2.3–2.9 GHz which covers WiFi 2.4 GHz and LTE 2.6 GHz bands. The proposed system also provides dual polarization with 10 dB polarization diversity gain and envelope correlation coefficient less than 0.15. Each individual antenna has a gain of 5.1 dB and 68% efficiency.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Biglieri, E. et al. : MIMO Wireless Communications, 1st ed., Cambridge University Press, Cambridge, 2007.CrossRefGoogle Scholar
[2]AliNezhad, S.M.; Hassani, H.R.: A novel triband E-shaped printed monopole antenna for MIMO application. IEEE Antennas Wirel. Propag. Lett., 9 (2010), 576579.Google Scholar
[3]Su, S.-W.; Lee, C.-T.; Chang, F.-S.: Printed MIMO-antenna system using neutralization-line technique for USB-dongle applications. IEEE Trans. Ant. Propag., 60 (2012), 459463.Google Scholar
[4]Sonkki, M.; Antonino-Daviu, E.; Cabedo-Fabrés, M.; Ferrando-Bataller, M.; Salonen, E.T.: Improved planar wideband antenna element and its usage in a mobile MIMO system. IEEE Antennas Wirel. Propag. Lett., 11 (2012), 826829.CrossRefGoogle Scholar
[5]Gao, Y.; Chen, X.; Ying, Z.; Parini, C.: Design and performance investigation of a PIFA array at 2.5 GHz for MIMO terminal. IEEE Trans. Antennas Propag., 55 (2007), 34333441.CrossRefGoogle Scholar
[6]Li, J.-F.; Chu, Q.-X.; Huang, T.-G.: A compact wideband MIMO antenna with two novel bent slits. IEEE Trans. Ant. Propag., 60 (2012), 482489.CrossRefGoogle Scholar
[7]Zhou, X.; Quan, X.-L.; Li, R.-L.: A dual-broadband MIMO antenna system for GSM/UMTS/LTE and WLAN handsets. IEEE Antennas Wirel. Propag. Lett., 11 (2012), 551554.CrossRefGoogle Scholar
[8]Molischand, A.F.; Win, M.Z.: MIMO systems with antenna selection. IEEE Microw. Mag., 5 (2004), 4656.Google Scholar
[9]Sharawi, M.S.; Numan, A.B.; Khan, M.U.; Aloi, D.N.: A dual-element dual-band MIMO antenna system with enhanced isolation for mobile terminals. IEEE Antennas Wirel. Propag. Lett., 11 (2012), 10061009.Google Scholar
[10]Park, J.; Choi, J.; Park, J.-Y.; Kim, Y.-S.: Study of a T-shaped slot with a capacitor for high isolation between MIMO antennas. IEEE Antennas Wirel. Propag. Lett., 11 (2012), 15411544.Google Scholar
[11]Ayatollahi, M.; Rao, Q.; Wang, D.: A compact, high isolation and wide bandwidth antenna array for LTE wireless devices. IEEE Trans. Ant. Propag., 60 (2012), 49604963.CrossRefGoogle Scholar
[12]Cui, S.; Liu, Y.; Jiang, W.; Gong, S.X.: Compact dual-band monopole antennas with high port isolation. Electron. Lett., 47 (2011), 579580.CrossRefGoogle Scholar
[13]Payandehjoo, K.; Abhari, R.: Employing EBG structures in multiantenna systems for improving isolation and diversity gain. IEEE Antennas Wirel. Propag. Lett., 8 (2009), 11621165.CrossRefGoogle Scholar
[14]Lin, K.-C.; Wu, C.-H.; Lai, C.-H.; Ma, T.-G.: Novel dual-band decoupling network for two-element closely spaced array using synthesized microstrip lines. IEEE Trans. Ant. Propag., 60 (2012), 51185128.CrossRefGoogle Scholar
[15]Li, Z.; Du, Z.; Takahashi, M.; Saito, K.; Ito, K.: Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals. IEEE Trans. Ant. Propag., 60 (2012), 473481.CrossRefGoogle Scholar
[16]Karimian, R.; Tadayon, H.: Multiband MIMO antenna system with parasitic elements for WLAN and WiMAX application. Int. J. Antennas Propag., 2013 (2013), 17.Google Scholar
[17]Lee, J.-M.; Kim, K.-B.; Ryu, H.-K.; Woo, J.-M.: A compact ultrawideband MIMO antenna with WLAN band-rejected operation for mobile devices. IEEE Antennas Wirel. Propag. Lett., 11 (2012), 990993.Google Scholar
[18]MoradiKordalivand, A.; Rahman, T.A.: Broadband modified rectangular microstrip patch antenna using stepped cut at four corners method. Prog. Electromagn. Res., 137 (2013), 599619.CrossRefGoogle Scholar
[19]MoradiKordalivand, A.; Rahman, T.A.; Ebrahimi, S.; Hakimi, S.: An equivalent circuit model for broadband modified rectangular microstrip monopole antenna. Wirel. Pers. Commun., 77 (2014), 13631375.Google Scholar
[20]Colburn, J.S.; Rahmat-Samii, Y.; Jensen, M.A.; Pottie, G.J.: Evaluation of personal communications dual-antenna handset diversity performance. IEEE Trans. Ant. Propag., 47 (1998), 737746.Google Scholar