Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T05:32:57.480Z Has data issue: false hasContentIssue false

Electrolyte Balance

Published online by Cambridge University Press:  10 March 2009

Anita Aperia
Affiliation:
St. Göran's Children's HospitalStockholm
Peter Herin
Affiliation:
St. Göran's Children's HospitalStockholm

Extract

The kidney is structurally and biochemically immature at birth. As a consequence, renal function is low (3;10;ll;18). Glomerular filtration rate (related to body surface area or to body weight) is approximately 25% of that in adults. The capacity of several different tubular transport systems is lower in the infant than in the adult (2;5;13;21;28). A low transporting capacity of the neonatal kidney will sometimes result in undesired losses of electrolytes, amino acids, and peptides. The capacity to concentrate urine is low (7;29), and disturbances of serum tonicity, therefore, are common. The low concentrating capacity can be attributed to renal immaturity. The capacity of the newborn fullterm as well as preterm infant to release antidiuretic hormone is normal 7;31).

Type
Neonatal Disorders of Water and Heat Balance
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Al-Dahhan, J., Haycock, G. B., Chantler, C., & Stimmler, L.Sodium homeostasis in term and preterm neonates. I. Renal aspects. Arch. Dis Child., 1983, 58, 335–42.CrossRefGoogle ScholarPubMed
2.Aperia, A., & Broberger, U.Beta-2-microglobulin, an indicator of renal tubular maturation and dysfunction in the newborn. Acta Paediatr. Scand., 1979, 68, 669–76.CrossRefGoogle ScholarPubMed
3.Aperia, A., Broberger, O., Elinder, G., Herin, P., & Zetterström, P.Postnatal development of renal function in preterm and fullterm infants. Acta Paediatr. Scand., 1981, 70, 183–87.CrossRefGoogle Scholar
4.Aperia, A., Broberger, O., Herin, P., & Zetterström, R.Sodium excretion in relation sodium intake and aldosterone excretion in newborn preterm and fullterm infants. Acta Paediatr. Scand., 1979, 68, 813-17.CrossRefGoogle Scholar
5.Aperia, A., Broberger, O., Herin, P., & Zetterström, R. Extrauterine adaptation of renal function in fullterm and preterm newborn infants. In Stern, L. (ed.), Intensive care in the newborn, III. New York: Masson, 1981, 135–42.Google Scholar
6.Aperia, A., Fukuda, Y., & Lechene, C.Ontogenic increase of NA+-H +-exchange induces increase Na- K ATPase in rat proximal convoluted tubule (RPCT). Kidney Int., 1988, 33, 415.Google Scholar
7.Aperia, A., Herin, P., Lundin, S., Melin, P., & Zetterström, R.Regulation of renal water excretion in newborn fullterm infants. Acta Paediatr. Scand., 1984, 73, 717–21.CrossRefGoogle Scholar
8.Aperia, A., Herin, P., & Zetterström, R. Sodium, chloride, and potassium needs in very low birthweight infants. In Tsang, R. C. (ed.), Vitamin and mineral requirements in preterm infants. New York: Marcel Dekker, 1985, 137–51.Google Scholar
9.Aramaki, Y., Takahashi, M., Inaba, A., Ishii, Y., & Tsuchiya, S.Uptake of aminoglycoside antibiotics into brush-border membrane vesicles and inhibition of (Na+ + K+)-ATP-ase activity of baselateral membrane. Biochem. Biophys. Acta, 1986, 862, 111–18.CrossRefGoogle Scholar
10.Arant, B.Developmental patterns of renal functional maturation compared in the human neonate. J. Pediatr., 1978, 92, 705–12.CrossRefGoogle ScholarPubMed
11.Barnett, H. L.Kidney function in young infants. Pediatrics, 1950, 5, 171–79.CrossRefGoogle ScholarPubMed
12.Barratt, T. M. Renal disease in the first year of life. In Recent advances in renal medicine. London: Churchill Livingstone, 1982, 197212.Google Scholar
13.Brodehl, J., & Gellissen, K.Endogenous renal transport of free amino acids in infancy and childhood. Pediatrics, 1968, 42, 395404.CrossRefGoogle ScholarPubMed
14.Dillon, M., Gillin, M., Ryness, J., & de Swiet, M.Plasma renin activity and aldosterone concentration in the human newborn. Arch. Dis. Child., 1976, 51, 537–40.CrossRefGoogle ScholarPubMed
15.Edelmann, C. M. Jr., Soriano, J. R., Boichis, H., Gruskin, A. B., & Acosta, M. I.Renal bicarbonate reabsorption and hydrogen ion excretion in normal infants. J. Clin. Invest., 1967, 46, 1309–17.CrossRefGoogle ScholarPubMed
16.Engelke, S., Shah, B., Vasan, U., & Raye, J.Sodium balance in very low-birth-weight infants. J. Pediatr., 1978, 93, 837–41.CrossRefGoogle ScholarPubMed
17.Fukuda, Y., & Aperia, A. Gentamicin inhibition of the NaK pump in rat kidney cells. In manuscript.Google Scholar
18.Guignard, J. P., Torrado, A., Da Cunha, O., & Gautier, E.Glomerular filtration rate in the first three days of life. J. Pediatr., 1975, 87, 268–72.CrossRefGoogle Scholar
19.Godard, C., Geering, J.-M., Geering, K., & Vallotton, M.Plasma renin activity related to sodium balance, renal function and urinary vasopressin in the newborn infant. Pediatr. Res., 1979, 13, 742–45.CrossRefGoogle ScholarPubMed
20.Harkavy, K. L., Scanlon, J. W., & Jose, O.The effects of theophylline on renal function in the premature newborn. Biol. Neonate, 1979, 35, 126–30.CrossRefGoogle ScholarPubMed
21.Karlén, J., Aperia, A., & Zetterström, R.Renal excretion of calcium and phosphate in preterm and fullterm infants. J. Pediatr., 1985, 106, 814–19.CrossRefGoogle Scholar
22.Larsson, S. H., Aperia, A., & Lechene, C.Studies on final differentiation of rat renal proximal tubular cells in culture. I. Cellular membrane Na and K effective permeability. Am. J. Physiol., 1986, 251, C455–64.CrossRefGoogle Scholar
23.Rahman, N., Boineau, F., & Lewy, J.Renal failure in the perinatal period. Clin. Perinatol., 1981, 8, 241–50.CrossRefGoogle ScholarPubMed
24.Roberts, R. J. In Drug therapy in infants; Pharmacologic principles and clinical experience. WB Saunders, 1984, 226–49.Google Scholar
25.Seri, I., & Aperia, A.Contribution of dopamine2–receptors to the dopamine-induced increase in glomerular filtration rate. Am. J. Physiol., 1988, 254, F196201.Google Scholar
26.Shaffer, S., Geer, P., & Goetz, K.Elevated atrial natriuretic factor in neonates with respiratory distress syndrome. J. Pediatr., 1986, 109, 1028–33.CrossRefGoogle ScholarPubMed
27.Sulyok, E., Németh, M., Tényi, I, Csaba, I., Györy, E., Ertl, T., & Varga, F.Postnatal development of renin-angiotensin-aldosterone system, RAAS, in relation to electrolyte balance in premature infants. Pediatr. Res., 1979, 13, 817–20.CrossRefGoogle ScholarPubMed
28.Sulyok, E., Heim, T., Soltesz, G., & Jászai, V.The influence of maturity on renal control of acidosis in newborn infants. Biol. Neonate, 1972, 21, 418–35.CrossRefGoogle ScholarPubMed
29.Svenningsen, N. W., & Aronsson, A. S.Postnatal development of renal concentration capacity as estimated by DDAVP-test in normal and asphyxiated neonates. Biol. Neonate, 1974, 25, 230–41.CrossRefGoogle ScholarPubMed
30.Tulassay, T., Rascher, W., Seyberth, H., Lang, R., Toth, M., & Sulyok, E.Role of atrial natriuretic peptide in sodium homeostasis in premature infants. J. Pediatr., 1986, 109, 1023–27.CrossRefGoogle ScholarPubMed
31.Vanpee, M., Herin, P., Zetterström, R., & Aperia, A.Postnatal development of renal function in very low birth-weight infants. Acta Paediatr. Scand., 1988, 77, 191–97.CrossRefGoogle Scholar