Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T03:40:46.786Z Has data issue: false hasContentIssue false

Neuronal Replacement After Traumatic or Age-Dependent Brain Damage

A Review of Experimental Work in Rodents and its Clinical Implications

Published online by Cambridge University Press:  10 March 2009

Anders Björklund
Affiliation:
Department of HistologyUniversity of Lund
Fred H. Gage
Affiliation:
Department of HistologyUniversity of Lund

Extract

During the last few years evidence has accumulated that fetal neurons, implanted into the depth of the brain in adult rats, can reestablish damaged connections in the host brain and substitute functionally for elements lost or damaged as a result of a preceding lesion. This research work has led to the realization that, contrary to traditional views, the adult mammalian CNS has a potential to incorporate new neuronal elements into already established neuronal circuitry and that such implanted neurons can modify the function and behavior of the recipient. For a long time it was thought that the remarkable regenerative and functional potential of CNS tissue grafts that had been demonstrated in cold-blooded vertebrates reflected a fundamental difference in the regenerative properties of central nervous tissue between cold-blooded vertebrates and mammals. During the last few years it has become evident however, that at least certain types of intracerebral neural grafts can perfoum just as well in developing and mammals as in developing or adult submammalian vertebrates.

Type
Technology and Health Care for the Elderly
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Aguayo, A. J., Björklund, A., Stenevi, U., & Carlstedt, T.Fétal mesencephalic neurons survive and extent long axons across peripheral nervous system grafts inserted into the adult rat striatum. Neuroscience Letters, 1984, 45, 53–8.CrossRefGoogle Scholar
2.Barnes, C. A., McNaughton, B. L., & O'Keefe, J.Loss of place specificity in hip-pocampal complex spike cells of senescent rat. Neurobiology of Aging, 1983, 4, 113–19.CrossRefGoogle Scholar
3.Bartus, R. T., Dean, R. L., Beer, B., & Lippa, A. S.The cholinergic hypotheses of geriatric memory dysfunction. Science, 1982, 217, 408–17.CrossRefGoogle Scholar
4.Björklund, A., Dunnett, S. B., Stenevi, U., Lewis, M. E., & Iversen, S. D.Reinnervation of the denervated striatum by substantia nigra transplants: Functional consequences as revealed by pharmacological and sensorimotor testing. Brain Research, 1980, 199, 307–33.CrossRefGoogle ScholarPubMed
5.Björklund, A., Gage, F. H., Schmidt, R. H., Stenevi, U., & Dunnett, S. B.Intracerebral grafting of neuronal cell suspensions. VII. Recovery of choline acetyltrans-ferase activity and acetylcholine synthesis in the denervated hippocampus reinner-vated by septal suspension implants. Acta Physiologica Scandinavica, 1983, 522, 5966 (Suppl.).Google Scholar
6.Björklund, A., Kromer, L. F., & Stenevi, U.Cholinergic reinnervation of the rathippocampus by septal implants is stimulated by perforant path lesion. Brain Research, 1979, 173, 5764.CrossRefGoogle ScholarPubMed
7.Björklund, A., Schmidt, R. H., & Stenevi, U.Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. Cell Tissue Research, 1980, 212, 3945.CrossRefGoogle ScholarPubMed
8.Björklund, A., & Stenevi, U.Reformation of the severed septohippocampal cholinergic pathway in the adult rat by transplanted septal neurones. Cell Tissue Research, 185, 289302.Google Scholar
9.Björklund, A., & Stenevi, U.Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Research, 1979, 177, 555–60.CrossRefGoogle ScholarPubMed
10.Björklund, A., Stenevi, U., Dunnett, S. B., & Gage, F. H.Cross-species neural grafting in a rat model of Parkinson's disease. Nature, 1982, 298, 652–54.CrossRefGoogle Scholar
11.Björklund, A., Stenevi, U., Dunnett, S. B., & Iversen, S. D.Functional reactivation of the deafferented neostriatum by nigral transplants. Nature, 1981, 289, 497–99.CrossRefGoogle ScholarPubMed
12.Björklund, A., Stenevi, U., Schmidt, R. H., Dunnett, S. B., & Gage, F. H.Intracerebral grafting of neuronal cell suspensions. I. Introduction and general methods of preparation. Acta Physiologica Scandinavia, 1983, 522, 110 (Suppl.).Google ScholarPubMed
13.Björklund, A., Stenevi, U., Schmidt, R. H., Dunnett, S. B., & Gage, F. H.Intracerebral grafting of neuronal cell suspensions. II. Survival and growth of nigral cells implanted in different brain sites. Acta Physiologica Scandinavica, 1983, 522, 1122. (Suppl.)Google ScholarPubMed
14.Brundin, P., Isacson, O., & Björklund, A.Monitoring of cell viability in suspensions of embryonic CNS tissue and its criterion for intracerebral graft survival. Brain Research, in press.Google Scholar
15.Burns, R. S., Chiuch, C. C., Markey, S. P., Ebert, M. H., Jacobowitz, D. M., & Kopin, I. J.A primate model of Parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 4546–50.CrossRefGoogle Scholar
16.Campbell, B. A., Krauter, E. E., & Wallace, J. E. Animal models of aging: Sensory-motor and cognitive function in the aging rat. In Stein, D. G. (Ed.) Psychology of aging: Problems and prospectives. Amsterdam: Elsevier/North-Holland, 1980, 201–26.Google Scholar
17.Carlsson, A.The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacological Review, 1959, 11, 490–93.Google ScholarPubMed
18.Cotman, C. W., & Lynch, G. S. Reactive synaptogenesis in the adult nervous system. In Barondes, S. H. (Ed.) Neuronal recognition. New York: Plenum, 1976, 69108.CrossRefGoogle Scholar
19.Coyle, J., Price, D., & DeLong, M.Alzheimer's disease: A disorder of cortical cholinergic innervation. Science, 1983, 219, 1184–90.CrossRefGoogle ScholarPubMed
20.Cubells, J. F., & Joseph, J. A.Neostriatal dopamine receptor loss and behavioural deficts in the senescent rat. Life Sciences, 1981, 28, 1215–18.CrossRefGoogle Scholar
21.Dunnett, S. B., Björklund, A., Schmidt, R. H., Stenevi, U., & Iversen, S. D.Intracerebral grafting of neuronal cell suspensions. IV. Behavioural recovery in rats with unilateral 6-OHDA lesions following implantation of nigral cell suspensions in different brain sites. Acta Physiologica Scandinavica, 1983, 522, 2937 (Suppl.).Google Scholar
22.Dunnett, S. B., Björklund, A., Schmidt, R. H., Stenevi, U., & Iversen, S. D.Intracerebral grafting of neuronal cell suspensions. V. Behavioural recovery in rats with bilateral 6-OHDA lesions following implantation of nigral cell suspensions. Acta Physiologica Scandinavica, 1983, 522, 3947 (Suppl.).Google ScholarPubMed
23.Dunnett, S. B., Björklund, A., Stenevi, U., & Iversen, S. D.Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions. Brain Research, 1981, 215, 147–61.CrossRefGoogle ScholarPubMed
24.Dunnett, S. B., Björklund, A., Stenevi, U., & Iversen, S. D.Grafts of embryonic substantia nigra reinnervating the ventrolateral striatum ameliorate sensorimotor impairments and akinesia rats with 6-OHDA lesions of the nigrostriatal pathway. Brain Research, 1981, 229, 209–17.CrossRefGoogle ScholarPubMed
25.Dunnett, S. B., Björklund, A., Stenevi, U., & Iversen, S. D.Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. II. Bilateral lesions. Brain Research, 1981, 229, 457–70.CrossRefGoogle ScholarPubMed
26.Dunnett, S. B., Bunch, S. T., Gage, F. H., & Björklund, A.Transplantation of dopamine-rich tissue into rats with 6-OHDA lesions of the ventral tegmental area. I. Effects on spontaneous and drug-induced activity. Behavioral and Brain Research, in press.Google Scholar
27.Dunnett, S. B., Low, W. C., Iversen, S. D., Stenevi, U., & Björklund, A.Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Research, 1982, 251, 335–48.CrossRefGoogle ScholarPubMed
28.Eckerman, D. A., Gordon, W. A., Edwards, J. D., MacPhail, R. C., & Gage, M. I.Effects of scopolamine, pentobarbital and amphetamine on radial arm maze performance in the rat. Pharmacology, Biochemistry and Behavior, 1980, 12, 595602.CrossRefGoogle ScholarPubMed
29.Freed, W. J., Morishisa, J. M., Spoor, E., Hoffer, B. J., Olson, L., Seiger, A., & Wyatt, R. J.Transplanted adrenal chromaffin cells in the rat brain reduce lesion induced rotational behavior. Nature, 1981, 292, 351–52.CrossRefGoogle Scholar
30.Freed, W. J., Perlow, M. J., Karoum, F., Seiger, A., Olson, L., Hoffer, B. J., & Wyatt, R. J.Restoration of dopaminergic function by grafting of fetal rat substantianigra to the caudate nucleus: Long-term behavioural, biochemical and histochemical Studies. Annals of Neurology, 1980, 8, 510–19.CrossRefGoogle Scholar
31.Freund, T., Bolam, P., Björklund, A., Stenevi, U., Dunnett, S. B., & Smith, A. D.Synaptic connections of nigral transplants reinnervating the host neostriatum: A TH- immunocytochemical study. Journal of Neuroscience, in press.Google Scholar
32.Gage, F. H., & Björklund, A.Deafferentation-induced trophic influence of growth and survival of grafted cholinergic neurons in the hippocampal formation. Journal of Comparative Neurology, in preparation.Google Scholar
33.Gage, F. H., Björklund, A., Stenevi, U., & Dunnett, S. B.Intracerebral grafting of neuronal cell suspensions. VIII. Cell survival and axonal outgrowth of dopaminergic and cholinergic cells in the aged brain. Acta Physiologica Scandinavica, 1983, 522, 6775 (Suppl.).Google Scholar
34.Gage, F. H., Björklund, A., Stenevi, U., Dunnett, S. B., & Kelly, P. A. T.Intrahip-pocampal septal grafts ameliorate learning impairments in aged rats. Science, 1984, 225, 533–35.CrossRefGoogle ScholarPubMed
35.Gage, F. H., Dunnett, S. B., & Björklund, A.Spatial learning and motor deficits in aged rats. Neurobiology of Aging, 1984, 5, 4348.CrossRefGoogle ScholarPubMed
36.Gage, F. H., Dunnett, S. B., Björklund, A., & Stenevi, U.Aged rats: Recovery of motor coordination impairments by intrastriatal nigral grafts. Science, 1983, 221, 966–69.CrossRefGoogle ScholarPubMed
37.Gage, F. H., Kelly, P. A. T., & Björklund, A.Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats. Journal of Neuroscience, in press.Google Scholar
38.Gash, D., Sladek, J. R., & Sladek, C. D.Functional development of grafted vaso-pressin neurons. Science, 1980, 210, 1367–69.CrossRefGoogle ScholarPubMed
39.Geinisman, Y., Bondareff, W., & Dodge, J. T.Partial deafferentation of neurons in the dentate gyrus of the senescent rat. Brain Research, 1977, 134, 541–45.CrossRefGoogle ScholarPubMed
40.Hoff, S. F., Scheff, S. W., Bernardo, L. S., & Cotman, C. W.Lesion-induced synaptogenesis in the dentate gyrus of aged rats: I. Loss and reacquisition of normal synaptic density. Journal of Comparative Neurology, 1982, 205, 246–52.CrossRefGoogle Scholar
41.Joseph, J. A., Bartus, R. T., Clody, D., Morgan, D., Finch, C., Beer, B., & Sesack, S.Psychomotor performance in the senescent rodent: Reduction of deficits via striatal dopamine receptor up-regulation. Neurobiology of Aging, 1983, 4, 313–19.CrossRefGoogle ScholarPubMed
42.Kelly, P. A. T., Gage, F. H., Ingvar, M., Lindvall, O., Stenevi, U., & Björklund, A.Functional reactivation of the deafferented hippocampus by embryonic septal grafts as assessed by measurements of local glucose utilization. Experimental Brain Research, in press.Google Scholar
43.Low, W. C., Daniloff, J. K., Bodony, R. P., & Wells, J. Cross-species transplants of cholinergic neurons and the recovery of function. In Björklund, A., & Stenevi, U. (Eds.) Neural grafting in the mammalian CNS. Amsterdam: Elsevier, in press.Google Scholar
44.Low, W. C., Lewis, P. R., Bunch, S. T., Dunnett, S. B., Thomas, S. R., Iversen, S. D., Björklund, A., & Stenevi, U.Functional recovery following neural transplantation of embryonic septal nuclei in adult rats with septohippocampal lesions. Nature, 1982, 300, 260–62.CrossRefGoogle ScholarPubMed
45.Marshall, J. F., & Berrios, N.Movement disorders of aged rats: Reversal by dopamine receptor stimulation. Science, 1979, 206, 477–79.CrossRefGoogle ScholarPubMed
46.Marshall, J. F., & Teitelbaum, P. New considerations in the neuropsychology of motivated behaviours. In Iversen, L. L., Iversen, S. D., & Snyder, S. H. (Eds.) Handbook of Psychopharmacology, Vol. 7. New York: Plenum Press, 1977, 201–29.CrossRefGoogle Scholar
47.Morris, R. G. M.Spatial localization does not require the presence of locus cues. Learning Motivation, 1981, 12, 239–60.CrossRefGoogle Scholar
48.Nadaud, D., Herman, J. P., Simon, H., & LeMoal, M.Functional recovery following transplantation of ventral mesencephalic cells in rats subjected to 6-OHDA lesions of the mesolimbic dopaminergic neurons. Brain Research, in press.Google Scholar
49.O'Keefe, J., & Nadel, L.The hippocampus as a cognitive map. Oxford: Clarendon Press, 1978.Google Scholar
50.Olton, D. S., Becker, J. T., & Handelman, G. E.Hippocampus, space and memory. Behavioral and Brain Sciences, 2, 313–65.CrossRefGoogle Scholar
51.Perlow, M. J., Freed, W. J., Hoffer, B. J., Seiger, A., Olson, L., & Wyatt, R. J.Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science, 1979, 204, 643–47.CrossRefGoogle ScholarPubMed
52.Schmidt, R. H., Björklund, A., & Stenevi, U.Intracerebral grafting of dissociated CNS tissue suspensions: A new approach for neuronal transplantation to deep brain sites. Brain Research, 1981, 218, 347–56.CrossRefGoogle ScholarPubMed
53.Schmidt, R. H., Björklund, A., Stenevi, U., Dunnett, S. B., & Gage, F. H.Intracerebral grafting of neuronal cell suspension. III. Activity of intrastriatal nigral suspension implants as assessed by measurements of dopamine synthesis and metabolism. Acta Physiologica Scandinavica, 1983, 522, 2332. (Suppl.)Google ScholarPubMed
54.Schmidt, R. H., Ingvar, M., Lindvall, O., Stenevi, U., & Björklund, A.Functional activity of substantia nigra grafts reinnervating the striatum: Neurotransmitter metabolism and (14C)-2-deoxy-D-glucose autoradiography. Journal of Neurochemistry, 1982, 38, 737–48.CrossRefGoogle ScholarPubMed
55.Sims, N. R., Marek, K. L., Bowen, D. M., & Davison, A. N.Production of (14C)acetylcholine and (14C)carbon dioxide from (U14C)glucose in tissue prisms from aging rat brain. Journal of Neurochemistry, 1982, 38, 488–92.CrossRefGoogle ScholarPubMed
56.Stenevi, U., Björklund, A., & Svendgaard, N.-Aa. Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival. Brain Research, 1976, 114, 120.CrossRefGoogle Scholar
57.Strieker, E. M., & Zigmond, M. J. Recovery of function after damage to central catecholamine-containing neurons: A neurochemical model for the lateral hypothalamic syndrome. In Sprague, J. M. & Epstein, A. E. (Eds.) Progress in physiological psychology and psychobiology. New York: Academic Press, 1976, 121–88.Google Scholar
58.Sutherland, R. J., Whishaw, I. Q., & Regeher, J. C.Cholinergic receptor blockade impairs spatial localization using distal cues in the rat. Journal of Comparative Physiology and Psychology, 1982, 96, 563–73.CrossRefGoogle ScholarPubMed
59.Terry, R., & Katzman, R.Senile dementia of the Alzheimer type. Annals of Neurology, 1983, 5, 497506.CrossRefGoogle Scholar
60.Ungerstedt, U., Ljungberg, T., & Ranje, C. Dopamine neurotransmission and the control of behaviour. In Cools, A. R., Lohman, A. H. M., & van den Bercken, J. H. L. (Eds.), Psychobiology of the striatum, New York: Pergamon Press, 1977, 8597.Google Scholar
61.Wallace, J. E., Krauter, E. E., & Campbell, B. A.Animal models of declining memory in the aged: Short-term and spatial memory in the aged rat. Journal of Gerontology 1980, 35, 355–63.CrossRefGoogle ScholarPubMed