Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T05:05:49.821Z Has data issue: false hasContentIssue false

Nutritional Needs of Newborn Infants in Intensive Care

Published online by Cambridge University Press:  10 March 2009

Albert Okken
Affiliation:
State University, Gronigen

Extract

In a review of the literature concerning the nutritional needs of newborn infants in intensive care, one surprisingly finds that only a few studies on this subject have been performed. This is in contrast to the extensive literature regarding the nutritional needs of healthy, growing newborn infants. It is astonishing, further, to find that there are many reports on the metabolic effects of illness in adults but hardly any on those in children and newborn infants. In fact, in a recent textbook of pediatric intensive care, in the chapter on nutrition and metabolism in the critically ill child, the authors state, “the metabolic derangements that occur in children have not been well delineated during critical illness, so that data and findings discussed have been taken mostly from the adult literature.”

Type
Neonatal Disorders of Water and Heat Balance
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Adam, P. A. J., Raiha, N., Rahiala, E. L., & Kekomaki, M.Oxidation of glucose and D-B-OH butyrate by the early human fetal brain. Acta Paediatrica Scandinavica, 1975, 64, 1724.CrossRefGoogle ScholarPubMed
2.Askanazi, J., Nordenstrom, J., Rosenbaum, S. H., et al. Nutrition for the patient with respiratory failure: Glucose vs. fat. Anesthesiology, 1981, 54, 373.CrossRefGoogle ScholarPubMed
3.Bark, S., Holm, I., Hakansson, I., & Wretlind, A.Nitrogen sparing effect of fat emulsion compared with glucose in the postoperative period. Acta Chirurgica Scandinavica, 1976, 142, 423.Google ScholarPubMed
4.Bier, D. M., Leake, R. D., Gruenke, L. D., & Sperling, M. A. Measurement of deuterium labelled glucose flux in newborn infants by the continuous isotopic infusion technique. Proc. 2nd Int. Conf. Stable Isotopes Oak Brook, 1975, 344.Google Scholar
5.Bier, D. M., Leake, R. D., Haymond, M. W., Arnold, K. J., Gruenke, L. D., Sperling, M. A., & Kipnis, D. M.Measurement of “true” glucose production rates in infancy and childhood with 6,6-dideuteroglucose. Diabetes, 1977, 26, 1016–23.CrossRefGoogle ScholarPubMed
6.Birkhahn, R. H., Long, C. L., Fitkin, D., Geiger, J. W., & Blackmore, W. S.Effects of major skeletal trauma on whole body protein turnover in man measured by L-[1,14C]-leucine. Surgery, 1980, 88, 294.Google Scholar
7.Bougneres, P. F., & Bier, D. M.Stable isotope dilution method for measurement of palmitate content and labelled palmitate tracer enrichment in microliter plasma samples. Journal of Lipid Research, 1982, 23, 502–07.CrossRefGoogle ScholarPubMed
8.Bougneres, P. F., Karl, I. E., Hillman, L. S., & Bier, D. M.Lipid transport in the human newborn: Palmitate and glycerol turnover and the contribution of glycerol to hepatic glucose output. Journal of Clinical Investigation, 1982, 70, 262–70.CrossRefGoogle ScholarPubMed
9.Bougneres, P. F., Balasse, E. O., Ferre, P., & Bier, D. M.Determination of ketone body kinetics using a D (-)-3-hydroxy- [4, 4, 4 −2H3]-butyrate tracer. Journal of Lipid Research, 1986, 27, 215–20.CrossRefGoogle Scholar
10.Bougneres, P. F., Lemmel, C., Ferre, P., & Bier, D. M.Ketone body transport in the human neonate and infant. Journal of Clinical Investigation, 1986b, 77, 4248.CrossRefGoogle ScholarPubMed
11.Cowett, R. M., Oh, W., & Schwartz, R.Persistent glucose production during glucose infusion in the neonate. Journal of Clinical Investigation, 1983, 71, 467–75.CrossRefGoogle ScholarPubMed
12.Cuthbertson, D. P.Post-shock metabolic response. Lancet, 1942, i, 433.CrossRefGoogle Scholar
13.Denne, S. C., & Kalhan, S. C.Glucose carbon recycling and oxidation in human newborns. American Journal of Physiology, 1986, 251, E71–E77.Google ScholarPubMed
14.Elwyn, D. H., Kinney, J. H., Gump, F. E., Askanazi, J., Rosenbaum, S. H., & Carpentier, Y. A.Some metabolic effects of fat infusions in depleted patients. Metabolism, 1980, 29, 125.CrossRefGoogle ScholarPubMed
15.Elwyn, D. H., Kinney, J. H., Gump, F. E., Jeevanadam, M., Chikenji, T., & Askanazi, J.Metabolic and endocrine effects of fasting followed by infusion of five percent glucose. Surgery, 1981, 90, 810.Google ScholarPubMed
16.Elwyn, D. H., Kinney, J. H., & Askanazi, J.Energy expenditure in surgical patients. Surgical Clinics of North America, 1981, 61, 545.CrossRefGoogle ScholarPubMed
17.Fomon, S. J., & Heird, W. C. (eds.). Energy and protein needs during infancy. Orlando, FL: Academic Press, 1986.Google Scholar
18.Frazer, T. E., Karl, I. E., Hillman, L. S., & Bier, D. M.Direct measurement of gluconeogenesis from [2, 3–13 C2]-alanine in the human neonate. American Journal of Physiology, 1981, 240, E615–E621.Google ScholarPubMed
19.Gill, K. M., Askanazi, J., & Hyman, A. I. Human utilization in the acutely ill: Implications for nutritional support. In Shoemaker, W. C. (ed.), Critical care medicine: State of the art. Fremont, CA: Society of Critical Care Medicine, 1984.Google Scholar
20.Gunn, T., Reaman, G., Outerbridge, E. W., & Colle, E.Peripheral total parenteral nutrition for premature infants with respiratory distress syndrome: A controlled study. Journal of Pediatrics, 1978, 92, 608–13.CrossRefGoogle ScholarPubMed
21.Hagenfeldt, L.Turnover of individual free fatty acids in man. Federal Proceedings, 1975, 34, 2246–49.Google ScholarPubMed
22.Kalhan, S. C., Bier, D. M., Savin, S. M., & Adam, P. A. J.Estimation of glucose turnover and 13 C recycling in the human newborn by simultaneous [1-13 C]-glucose and [6, 6-2 H2]- glucose tracers. Journal of Clinical Endocrinology and Metabolism, 1980, 50, 456–60.CrossRefGoogle Scholar
23.Kien, C. L., Young, V. R., Rohrbaugh, D. R., & Burke, J. F.Increased rates of whole body protein synthesis and breakdown in children recovering from burns. Annals of Surgery, 1978, 187, 833.CrossRefGoogle ScholarPubMed
24.Kinney, J. M., Zarem, H. A., & Rogers, R. L.Energy expenditure and utilization of carbohydrate, fat, and protein in hospitalized patients. Journal of Clinical Investigation, 1959, 38, 1017.Google Scholar
25.Kinney, J. M., & Elwyn, D. H.Protein metabolism and injury. American Review of Nutrition, 1983, 3, 433.CrossRefGoogle ScholarPubMed
26.Kraus, H., Schlenker, S., & Schwedensky, D.Developmental changes of cerebral ketone body utilization in human infants. Hoppe-Seyler's Zeitschrift Fur Physiologische Chemie, 1974, 355, 164–70.Google ScholarPubMed
27.Larca, L., & Greenbaum, D. M.Effectiveness of intensive nutritional regimes in patients who fail to wean from mechanical ventilation. Critical Care Medicine, 1982, 10, 297.CrossRefGoogle ScholarPubMed
28.Mickell, J. J.Urea nitrogen excretion in critically ill children. Pediatrics, 1982, 70, 949.CrossRefGoogle ScholarPubMed
29.Owen, O. E., & Reichard, G. A.Fuels consumed by man: the interplay between carbohydrates and fatty acids. Progress in Biochemical Pharmacology, 1971, 6, 177213.Google Scholar
30.Owen, O. E., Felig, P., Morgan, A. P., Wahren, J., & Cahill, G. F.Liver and kidney metabolism during prolonged starvation. Journal of Clinical Investigation, 1969, 48, 574–83.CrossRefGoogle ScholarPubMed
31.Patel, M. S., Johnson, C. A., Rajan, R., & Owen, O. E.The metabolism of ketone bodies in developing human brain: Development of ketone-body-utilizing enzymes and ketone bodies as precursors for lipid synthesis. Journal of Neurochemistry, 1975, 25, 905–08.CrossRefGoogle Scholar
32.Persson, B., Settergren, G., & Dahlquist, G.Cerebral arteriovenous difference of acetoacetate and D-²-hydroxybutyrate in children. Acta Paediatrica Scandinavica, 1972, 61, 273–78.CrossRefGoogle Scholar
33.Pollack, M. M., Wiley, J. S., & Holbrook, P. R.Early nutritional depletion in critically ill children. Critical Care Medicine, 1981, 9, 580.CrossRefGoogle ScholarPubMed
34.Rubaltelli, F. F., & Granati, B. (eds.). Neonatal therapy: An update. Amsterdam: Elsevier Science Publishers, 1986.Google Scholar
35.Ryan, N. T.Metabolic adaptations for energy production during trauma and sepsis. Surgical Clinics of North America, 1976, 56, 1073.CrossRefGoogle ScholarPubMed
36.Steele, R., Wall, J., DeBodo, D., & Altszuler, J.Measurement of the size and turnover rate of body glucose pool by the isotopic dilution method. American Journal of Physiology, 1956, 187, 1520.CrossRefGoogle Scholar
37.Stern, L. (ed.). Feeding the sick infant. New York: Raven Press, 1987.Google Scholar
38.Tsang, R. C. (ed.). Vitamin and mineral requirements in preterm infants. New York: Marcel Dekker, 1985.Google Scholar
39.Tserng, K. Y., & Kalhan, S. C.Estimation of glucose carbon recycling and glucose turnover with [U-13C]-glucose. American Journal of Physiology, 1983, 245, E476–E482.Google ScholarPubMed
40.Usher, R.Reduction in mortality from respiratory distress syndrome and prematurity with early administration of intravenous glucose and sodium bicarbonate. Pediatrics, 1963, 32, 966–75.CrossRefGoogle ScholarPubMed
41.Wharton, B. A. (ed.). Nutrition and feeding of preterm infants. Oxford: Blackwell Scientific Publications, 1987.Google Scholar
42.Wilkinson, A., & Yu, V. Y. H.Immediate effects of feeding on blood gases and some cardiorespiratory functions in ill newborn infants. Lancet, 1974, i, 1083–85.CrossRefGoogle Scholar
43.Yu, V. Y. H., James, B., & McMahon, R. A.Total parenteral nutrition in very low birth-weight infants: A controlled trial. Archives of Disease in Childhood, 1979, 54, 653–61.CrossRefGoogle ScholarPubMed
44.Zlotkin, S. H., Bryan, M. H., & Anderson, G. H.Intravenous nitrogen and energy intakes required to duplicate in utero nitrogen accretion in prematurely born human infants. Journal of Pediatrics, 1981, 99, 115–20.CrossRefGoogle ScholarPubMed